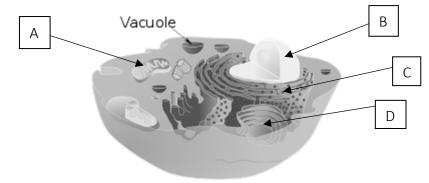
aced

Units 3&4 Biology Practice Exam 2022 – Trial 1 – Assessment Guide

Section A


VCAA Key	Quanting	A	
Knowledge	Question	Ar	nswer guide
Amino acids as the monomers of a polypeptide chain and the resultant hierarchical levels of structure that give rise to a functional protein	Question 1 Haemoglobin is a protein that is found in blood cells that contains iron, which enables the molecule to transport oxygen. Which of the following protein structures is illustrated in the image below?	D	Quaternary; haemoglobin contains more than two polypeptide chains joinea together (four in total).
	Beta 1 Heme group Alpha 2 Alpha 1		
	Source: https://www.getbodyunart.com/respiratory.gases-and-their-transport/hemoglobins-struet	ure	
	A. primary		
	B. secondary		
	C. tertiary		
	D. quaternary		
Nucleic acids as information molecules	Question 2	A	DNA contains a

Nucleic acids as information molecules	Que	estion 2	Α	DNA contains a
that encode	Wh	ich of the following nucleic acids does not contain a		deoxyribose sugar.
instructions for the synthesis of proteins:	ribo	ose sugar?		
the structure of DNA, the three main forms of	Α.	DNA		
RNA (mRNA, rRNA and tRNA) and a	В.	mRNA		
comparison of their respective nucleotides	C.	tRNA		
	D.	rRNA		

The genetic code as a universal triplet code	Qu	estion 3	В	The DNA of all organisms
that is degenerate and	The	e DNA of all organisms contain the same nitrogenous		contain adenine,
the steps in gene expression, including	bas	ses. This indicates that the genetic code is		thymine, guanine and
transcription, RNA processing in eukaryotic	Α.	redundant.		cytosine; therefore, the
cells and translation by ribosomes	В.	universal.		genetic code is universal.
nbosonies	C.	degenerate.		
	D.	degenerative.		

Use the following information to answer Questions 4 and 5.

Consider the following animal cell.

The general role of enzymes and	Que	estion 4	С	Mitochondria are the
coenzymes in	The	e primary process occurring at structure A would be		location of cellular
facilitating steps in photosynthesis and	Α.	anaerobic respiration.		respiration (the process
cellular respiration the general structure of	В.	photosynthesis.		that is responsible for
the biochemical pathways in	C.	ATP synthesis.		creating ATP).
photosynthesis and cellular respiration from initial reactant to final product	D.	DNA synthesis.		

s://www.pngwing.com/en/free-png-xn

The role of rough endoplasmic reticulum,	Qu	estion 5	D	The Golgi body is
Golgi apparatus and associated vesicles in the export of proteins		nich organelle is responsible for the final packaging of oten oten of the second states of th		responsible for storing, modifying and the final
from a cell via the protein secretory	A.	A		packaging of proteins in
pathway	В.	В		preparation for their
	C.	С		export from the cell.
	D.	D		

Analyse and evaluate bioethical issues using	Qu	estion 6	Α	Option A describes the
relevant approaches to	Wł	iich of the following describes a duty- and/or rule-		duty- and/or rule-based
bioethics and ethical concepts, including the	bas	sed approach to resolving ethical issues?		approach to resolving
influence of social, economic, legal and political factors relevant to the selected issue	А. В.	is concerned with how people act (the means) and places central importance on the idea that people must act in a particular way, regardless of the consequences that may be produced. an approach that places central importance on the		ethical issues. B is consequence-based and C is virtues-based.
		consideration of the consequences of an action (the ends), with the aim to achieve maximisation of positive outcomes.		
	C.	is concerned with the moral character of the person carrying out the action, providing guidance about the characteristics and behaviours a good person would seek to achieve to then be able to act in the right way.		
	D.	none of the above.		

Causes of changing allele frequencies in a population's gene pool,	Question 7				С	The STOP codon's mRNA
	mRNA level	AAG AAA	UAG	AGG		is UAG. Working
including environmental selection	Protein level	Lys Lys	STOP	Arg		backwards, the DNA
pressures, genetic drift and gene flow; and	Referring to the tak	le, the DNA t	riplet correspoi	nding to	I	triplet must be ATC.
mutations as the source of new alleles	the STOP codon wo	uld be				
oj nen aneles	A. UAG.					
	B. UTC.					
	C. ATC.					
	D. GTC.					
The basic elements of gene regulation:	Question 8				В	The repressor binds to
prokaryotic trp operon	The trp operon con	tains an opera	ator region whe	ere		the operator region.
as a simplified example of a regulatory process	A. RNA polymeras	e binds.				
	B. the repressor b	inds.				
	C. structural gene	s form.				
	D. coding for enzy	me productio	on occurs.			

The genetic code as a universal triplet code	Qu	estion 9	А	RNA processing occurs in
that is degenerate and	RN	A processing occurs in the		the nucleus during
the steps in gene expression, including	Α.	nucleus.		transcription.
transcription, RNA processing in eukaryotic	В.	ribosome.		
cells and translation by ribosomes	C.	rough endoplasmic reticulum.		
	D.	cytosol.		

The general role of enzymes and	Question 10	Α	Acetylcholinesterase is
coenzymes in	Acetylcholinesterase (AChE) is an enzyme that is found at		an enzyme and enzymes
facilitating steps in photosynthesis and	the synapse of nerves and muscles that has the function		are organic catalysts.
cellular respiration	of breaking down acetylcholine to ensure proper muscle		
	contraction and relaxation. An individual was admitted to		
	hospital with organophosphate poisoning that causes		
	excess acetylcholine to accumulate. This demonstrates		
	A. acetylcholinesterase is an organic catalyst.		
	B. acetylcholine is an organic catalyst.		
	C. organophosphates are biological catalysts.		
	D. acetylcholine breaks down the organophosphates.		

The general structure of

the biochemical

cellular respiration from initial reactant to

pathways in photosynthesis and

final product the general role of


enzymes and

coenzymes in facilitating steps in

photosynthesis and cellular respiration

The acceptor molecule NAD⁺ is involved in cellular biochemical processes. It is correct to state that

- **A.** NAD⁺ is found in the grana.
- **B.** NAD⁺ becomes NADH in the stroma.
- **C.** NAD⁺ becomes NADPH in the Krebs cycle.
- **D.** NAD⁺ becomes loaded NADH in cellular respiration.
- D NAD⁺ is the acceptor molecule (co-enzyme) involved in cellular respiration. It accepts hydrogen ions and its electrons to become NADH.

Question 12

The circles in the diagram represent

- A. tRNA.
- B. peptide bonds.
- C. amino acids.
- D. nucleic acids.

C The circles represent the monomers of a protein – amino acids.

Amino acids as the monomers of a polypeptide chain and the resultant hierarchical levels of structure that give rise to a functional protein

The genetic code as a

universal triplet code

expression, including transcription, RNA

ribosomes

processing in eukaryotic cells and translation by

that is degenerate and the steps in gene

Evaluate investigation methods and possible	Question 13DIncorrectly calibrating				
sources of personal errors/mistakes or bias, and suggest	An be	example of a systematic error in an experiment could		equipment can contribute to all group's	
improvements to increase accuracy and precision, and to reduce	Α.	writing down a measured volume using incorrect units.		measurements being incorrect – a systematic	
the likelihood of errors	В.	repeating an experiment.		error.	
	C.	mis-reading a measuring tool when taking a single reading.			
	D.	incorrectly calibrating equipment prior to use.			
The use of enzymes to manipulate DNA,	Que	estion 14	В	Endonucleases (also	
including polymerase to synthesise DNA, ligase	Enc	donucleases can be described as		known as restriction	

- A. circular DNA that are isolated from bacteria.
- **B.** enzymes that cut DNA.
- C. bacterial plasmids.
- **D.** nucleic acids that are derived from bacteria.
- Use the following gel electrophoresis to answer Questions

Length of DNA fragment (base pairs)	Marker	Sample A	Sample B	Sample C
1,000 bp				
900 bp				
800 bp				
700 bp				
600 bp				
500 bp				
400 bp				
300 bp				
200 bp				
100 bp				

enzymes) are enzymes that cut DNA at specific recognition sequences.

Amplification of DNA using polymerase chain reaction and the use of gel electrophoresis in sorting DNA fragments, including the interpretation of gel runs for DNA profiling

to join DNA and endonucleases to cut

DNA

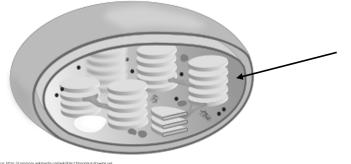
Question 15

Using the gel electrophoresis, which of the following statements is correct?

- A. sample A was approximately 1900 bp long
- **B.** sample B was cut with a restriction enzyme that produced three strands of DNA
- C. sample C was approximately 2350 bp long
- D. sample A was cut with a restriction enzyme that produced three strands
- *C* The original DNA strand was 2350 bp long. This can be calculated by adding the size of the 4 bands in sample C together.

Amplification of DNA using polymerase chain	Question 16	С	DNA has a slight
reaction and the use of gel electrophoresis in sorting DNA fragments,	The best explanation for the DNA samples in wells A, B		negative charge that
	and C separating is that		enables it to be attracted
including the interpretation of gel	A. DNA has a positive charge.		to the positive electrode
runs for DNA profiling	B. the positive electrode is attached to the same end as the well.		and travel towards that electrode through the
	C. DNA has a negative charge.		gel.
	D. the negative electrode is attached to opposite end of		
	the well.		
The function of CRISPR-	Question 17	С	Cas9 plays a part in the
Cas9 in bacteria and the application of this	CRISPR is a gene editing technology that can be used to		immune defence of
function in editing an organism's genome	manipulate an individual's DNA. It involves the use of the		bacteria against viruses.
	Cas9 enzyme that is found in and isolated from bacteria.		Its function is to cut the
	, The purpose of the Cas9 enzyme in bacteria is to		viral DNA into pieces.
	A. catalyse the joining of the bacteria's DNA.		
	B. increase bacterial cellular respiration.		
	C. cut viral DNA that has infected the bacteria.		
	D. promote the lysis of the bacteria.		
	Use the following information to answer Questions 18 and		
	19.		
	Polymerase Chain Reaction (PCR) is a frequently used		
	technique to amplify DNA that requires high		
	temperatures at its various stages.		
Amplification of DNA using polymerase chain	Question 18	D	Heating the DNA strand
reaction and the use of gel electrophoresis in sorting DNA fragments,	In one of the steps of PCR, the purpose of heating DNA to 95°C is to		to 95°C breaks the hydrogen bonds and
including the	A. enable the functioning of Taq polymerase.		separates the strands,
interpretation of gel runs for DNA profiling	B. catalyse the joining of the primer.		denaturing DNA.
	catalyse the joining of the free nucleotides.		3
	D. denature the DNA.		
Amplification of DNA	Question 19	С	Taq polymerase is
using polymerase chain reaction and the use of	In PCR, which of the following is used in order to catalyse	C	isolated from
gel electrophoresis in sorting DNA fragments,	the joining of nucleotides to the growing DNA strand?		thermophilic bacteria
including the	A. DNA ligase		and used in place of DNA
interpretation of gel runs for DNA profiling	B. DNA polymerase		polymerase due to its
	C. Taq polymerase		ability to withstand high
	D. free nucleotides		temperatures.

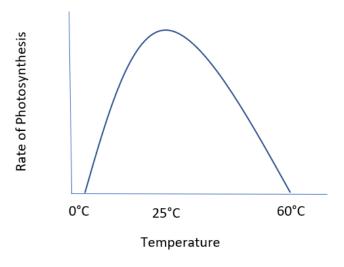
Uses and applications


of anaerobic

production

fermentation of biomass for biofuel Biofuel can be described as the conversion of biomass into a liquid using

Biofuel is created using Α microbes that undergo anaerobic fermentation.


- A. anaerobic fermentation.
- B. aerobic fermentation.
- C. yeast fermentation.
- D. viral respiration.

Inputs, outputs and locations of the light	Qu	estion 21	С	The arrow is pointing to
dependent and light independent stages of photosynthesis in C3 plants (details of biochemical pathway		e above diagram of a chloroplast has an arrow that ints to the location where protein synthesis occurs.		the stroma, the site of the light-independent stage of photosynthesis.
mechanisms are not	В.	the light-dependent stage of photosynthesis occurs.		
required)	C.	the light-independent stage of photosynthesis		
		occurs.		
	D.	the splitting of water occurs.		

Use the following information to answer Questions 22 and 23.

A group of students performed an experiment using Elodea (a water-based plant) leaves and monitored oxygen production levels as a reflection of the photosynthetic rate. The light exposure was kept constant throughout the experiment. They graphed their results as shown below:

The factors that affect the rate of	Question 22		D	As the temperature
the rate of photosynthesis: light availability, water availability, temperature and carbon dioxide concentration	 The graph shows that the hypothesis that students were bility, water bility, water bility, most likely testing is A. that the limiting factor is the rate of photosynthesis. 		D	As the temperature increases, photosynthesis increases up to a point; beyond this, photosynthesis decreases due to the denaturation of enzymes.
	D. th to ind	at increasing the temperature above 25°C will lead a reduction of the photosynthetic rate due to an crease in the denaturation of photosynthetic nzymes.		

The general factors that impact on enzyme	Question 23	Α	At lower temperatures,
function in relation to	The most likely explanation for the lower photosynthetic		enzyme activity slows
photosynthesis and cellular respiration:	rate at lower temperatures is		down.
changes in temperature, pH,	A. that the kinetic energy of the enzymes that are		
concentration, competitive and non-	involved in photosynthesis has decreased.		
competitive enzyme	B. the presence of a competitive inhibitor.		
inhibitors	C. that the enzymes that are involved in photosynthesis		
	have denatured.		
	D. that the active site of the enzyme can no longer bind		
	to its substrate.		
The role of Rubisco in photosynthesis,	Question 24	С	When the temperature is

photosynthesis,	Qu	estion 24	L	when the temperature is
including adaptations C_3 plants use the		plants use the enzyme Rubisco to convert carbon		high, oxygen becomes
of C3, C4 and CAM plants to maximise the	dio	xide into glucose in the Calvin cycle; however, Rubisco		more likely to bind to
efficiency of photosynthesis	car	also bind to oxygen, resulting in photorespiration.		Rubisco than carbon
	Pho	Photorespiration is likely to occur when		dioxide; this results in
	Α.	the stomata are open.		photorespiration.
	В.	in the presence of high quantities of water.		
	C.	the temperature is high.		
	D.	the CO_2 concentration is high.		

The main inputs, outputs and locations	Qu	estion 25	D	Glycolysis breaks down
of glycolysis, Krebs	The	e outputs of glycolysis include		glucose to form two
Cycle and electron transport chain	Α.	NADPH, ATP and pyruvate.		molecules each of
including ATP yield (details of biochemical	В.	NAD, ATP and pyruvate.		pyruvate, ATP and
pathway mechanisms are not required)	C.	NADH, ADP+Pi and glucose.		NADH; the latter of
are not requiredy	D.	NADH, ATP and pyruvate.		which were formed when
				hydrogen ions were
				picked up by NAD.

The characteristics and roles of the	Que	estion 26	Α	Natural killer cells and
components of the adaptive immune response against both	The function of natural killer cells and cytotoxic T cells can			cytotoxic T cells destroy
	be	described as		virally infected cells by
extracellular and intracellular threats,	Α.	inducing apoptosis in virally infected cells.		inducing apoptosis.
including the actions of B lymphocytes and their	В.	coating extracellular pathogens with proteins to		
antibodies, helper T and		attract other immune cells.		
cytotoxic T cells	C.	creating immunological memory.		
	D.	antibody-secreting cells.		
The innate immune	Ou	estion 27	A	Mucus membranes, non-
response including the	-		A	Mucus membranes, non-
steps in an inflammatory response		e second line of defence of the immune system in mans includes		pathogenic bacteria as
and the characteristics and roles of macrophages, neutrophils, dendritic cells, eosinophils, natural killer cells, mast	nur A.	complement proteins.		well as sweat, tears and saliva form parts of the
	В.	non-pathogenic bacteria.		first line of defence.
	C.	mucus membranes.		Complement proteins are
II- some long ont		sweat, tears and saliva.		part of the second line of
cells, complement proteins and interferons	D.	sweat, teals and saliva.		defence.

preventative mechanisms of pathogenic infection in animals and plants

The innate immune

steps in an inflammatory response

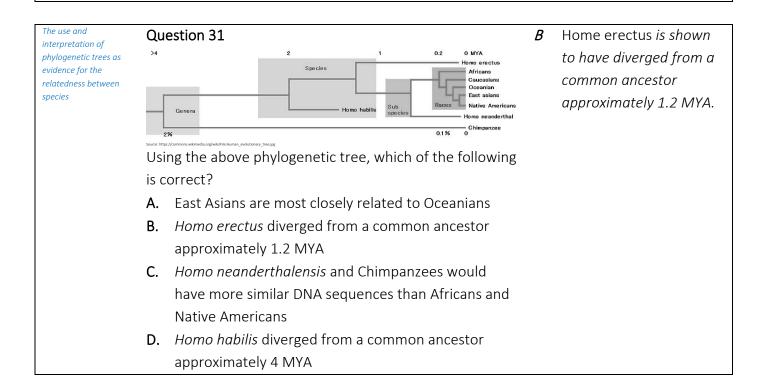
macrophages, neutrophils, dendritic

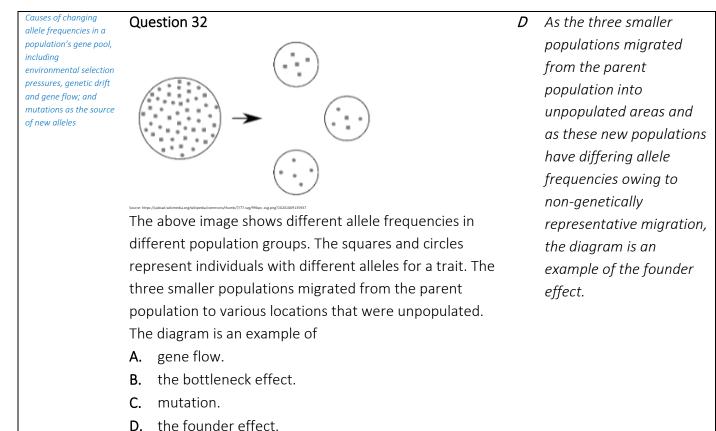
cells, eosinophils,

cells, complement proteins and interferons the characteristics and roles of the components of the adaptive immune response against both extracellular and intracellular threats, including the actions of B lymphocytes and their antibodies, helper T and cytotoxic T cells

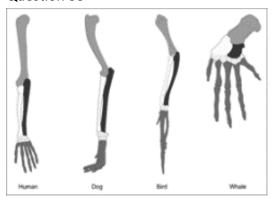
response including the

and the characteristics and roles of


natural killer cells, mast


The adaptive immune system in humans does not include

- A. natural killer cells.
- **B.** cytotoxic T cells.
- C. immunological memory.
- D. specificity.


A Natural killer cells are part of the innate immune system, belong to the second line of defence, and are nonspecific white blood cells.

The role of the lymphatic system in the	Question 29	С	Antigen presentation
immune response as a	The best description of the function of lymph nodes is		occurs in lymph nodes. B
transport network and the role of lymph nodes	that they are where		cells mature in the bone
as sites for antigen recognition by T and B	A. B cells mature.		marrow. T cells mature in
lymphocytes	B. T cells mature.		the thymus. Red blood
	C. antigen presentation occurs.		cells are not present in
	D. red blood cells are filtered.		lymph nodes.
Initiation of an immune response, including	Question 30	В	Transplanted organs can
antigen presentation,	Transplanted organs can be identified by a recipient's		be identified by the
the distinction between self-antigens and non-	body as foreign. Cyclosporin is an immune-suppression		recipient's body as
self antigens, cellular and non-cellular	drug given to transplant patients. Cyclosporin would most		foreign and, thus, are
pathogens and allergens	likely help to		destroyed by the immune
unergens	A. increase antigen presentation to white blood cells.		system. Cyclosporin is an
	B. increase a recipient's ability to accept the		immune-suppressing
	transplanted organ.		agent that enables the
	C. increase the ability of the immune system to		recipient to accept the
	recognise self-cells.		transplanted organ.
	D. increase antibody production toward the		
	transplanted organ.		

Evidence of relatedness between species: structural morphology – homologous and vestigial structures; and molecular homology – DNA and amino acid sequences

B Homology shows bone structures that are similar but adapted for different functions.

The image above shows four limbs of different species that share a recent common ancestor. This is an example of

- A. analogous structures.
- B. homologous structures.
- C. comparative embryology.
- D. similarity in amino acid sequencing.

Biological consequences of changing allele frequencies in terms of increased and decreased genetic diversity	Question 34 Asiatic cheetahs (<i>Acinonyx jubatus venaticus</i>) and African cheetahs (<i>Acinonyx jubatus</i>) are both threatened species due to climate change, habitat destruction and predation by humans. This has led to cheetahs inbreeding. They also have a low reproduction success rate. The genetic drift of these small Cheetah populations could result in extinction.		Increasing the genetic diversity of a population increases the species' abilities to survive chance events, such as a species-specific virus.
	 Which of the following factors would naturally increase their chances of surviving a possible species-specific virus? A. increasing the genetic diversity of the population B. decreasing gene flow between populations C. further inbreeding with greater reproductive success D. human intervention through selective breeding 		
Manipulation of gene pools through selective breeding programs	 Question 35 One problem with farmers selectively breeding cows for high quality meat is that A. organisms with favourable phenotypes can be bred. B. it causes an increase in the range of alleles in a population. C. it reduces the genetic diversity of the cow population. D. it increases an organism's ability to adapt to environmental change. 	С	Selective breeding enables the reproduction of organisms with favourable phenotypes but decreases the range of alleles in a population and, therefore, its genetic diversity.
Changes in species over geological time as evidenced from the fossil record: faunal (fossil) succession, index and transitional fossils, relative and absolute dating of fossils	 Question 36 Which of the following is not a characteristic of an index fossil? A. short-lived B. abundant C. wide geographic distribution D. found in many different rock strata 	D	Index fossils are useful as they are found in limited rock strata.
Consequences of bacterial resistance and viral antigenic drift and shift in terms of ongoing challenges for treatment strategies and vaccination against pathogens	 Question 37 Small changes in the genetic composition of a virus' genome due to mutations can result in A. antigenic drift. B. antigenic movement. C. antigenic shift. D. antigenic recombination. 	A	Antigenic drift refers to the genetic mutations that occur in a virus; in contrast, antigenic shift is where genes from different viruses mix.

Scientific and social strategies employed to	Question 38	D	
identify and control the	A virus' reproductive number has been a well-used term		
spread of pathogens, including identification of the pathogen and host, modes of transmission and measures to control transmission	throughout the COVID-19 pandemic; it indicates how		
	many people will be infected by an infected person, on average. Measles has an R ₀ value of 18 in contrast to COVID-19's 3.5.		The R ₀ value is the expected number of individuals who will be
	Source: https://www.medscape.com/answert/2500117-197541/what-6-the+naught-of-coronavirus-disease-2019-covid-19		infected from one
	This means that		infected individual; as
	A. measles is 18 times more pathogenic than COVID-19.		such, 18 people would be
	B. for every COVID-19 case, there are 3.5 times more measles cases.		expected to become infected from one
	C. for every COVID-19 case, there are 18 people who are expected to become infected.		measles case.
	D. for every measles case, 18 people are expected to		
	become infected.		
Scientific and social	Question 39	D	Creating a vaccine would
strategies employed to identify and control the	Human Immunodeficiency Virus (HIV) is a blood-borne	0	be the most effective
spread of pathogens, including identification	viral disease that emerged from chimpanzees. The most		method of control as it is
of the pathogen and	effective means of controlling the spread of HIV would be		a blood-borne viral
host, modes of transmission and	to		disease; therefore, mask
measures to control transmission	A. create antimicrobial drugs against the virus.		wearing, handwashing
measures to control			
measures to control	A. create antimicrobial drugs against the virus.		
measures to control	A. create antimicrobial drugs against the virus.B. encourage frequent hand washing.		and antimicrobials would
measures to control	 A. create antimicrobial drugs against the virus. B. encourage frequent hand washing. C. encourage mask wearing. D. create a vaccine against HIV. 	B	and antimicrobials would not be effective.
measures to control transmission	 A. create antimicrobial drugs against the virus. B. encourage frequent hand washing. C. encourage mask wearing. D. create a vaccine against HIV. Question 40	В	and antimicrobials would not be effective. Hominins only include
measures to control transmission The shared characteristics that define mammals, primates, hominoids	 A. create antimicrobial drugs against the virus. B. encourage frequent hand washing. C. encourage mask wearing. D. create a vaccine against HIV. Question 40 Hominins	В	and antimicrobials would not be effective. Hominins only include bipedal ancestors of
measures to control transmission The shared characteristics that define mammals,	 A. create antimicrobial drugs against the virus. B. encourage frequent hand washing. C. encourage mask wearing. D. create a vaccine against HIV. Question 40 Hominins A. include humans and the great apes.	В	and antimicrobials would not be effective. Hominins only include
measures to control transmission The shared characteristics that define mammals, primates, hominoids	 A. create antimicrobial drugs against the virus. B. encourage frequent hand washing. C. encourage mask wearing. D. create a vaccine against HIV. Question 40 Hominins	В	and antimicrobials would not be effective. Hominins only include bipedal ancestors of

Section B

VCAA Key Knowledge

Answer guide

E. coli bacteria have mechanisms to change their metabolism based on the environment. One metabolic pathway regulated by *E. coli* is tryptophan production. Tryptophan is an amino acid that is needed to build the proteins that are required to sustain the life of the organism. The image below shows the components of the trp operon.

The structure of genes: exons, introns and promoter and operator regions the basic elements of gene regulation: prokaryotic trp operon as a simplified example of a regulatory process	Question 1a (1 mark) Describe the function of the promoter region (P) in the diagram above.	Answer: • The promoter region is the site where RNA polymerase binds to DNA to enable the transcription of the structural genes. Marking protocol: One mark for the above point.
Causes of changing allele frequencies in a population's gene pool, including environmental selection pressures, genetic drift and gene flow; and mutations as the source of new alleles	Question 1b (4 marks) Explain the likely impact of a nonsense mutation in the regulatory region of the trp operon.	 Answer: A nonsense mutation occurs as a result of a point mutation that results in the coding of a STOP codon. This can result in a shortened, non-functional protein. This would mean that the repressor can no longer bind to the operator (O). The impact of this would be the continuous production of the amino acid tryptophan. Marking protocol: One mark for each of the above points.
The structure of genes: exons, introns and promoter and operator regions the basic elements of gene regulation: prokaryotic trp operon as a simplified example of a regulatory process	Question 1c (4 marks) Outline the process that occurs in <i>E. coli</i> when tryptophan is absent from its external environment.	 Answer: When tryptophan is absent from its external environment, the repressor can no longer bind to the operator region. This enables RNA polymerase to bind to the promoter region. Hence, the transcription of the structural genes will occur. Therefore, the enzymes involved in the production of tryptophan are produced.
		One mark for each of the above points.

Insulin, a hormone that is required for efficient glucose uptake by cells, is one protein that scientists have been able to reproduce through cloning the gene for insulin production. It involves the use of EcoR1, which was isolated from bacteria; it contains 277 amino acids, three of which are involved in severing bonds in the sequence GAATTC to isolate the insulin gene. It is a commonly used DNA manipulation tool.

The use of enzymes to manipulate DNA, including polymerase to synthesise DNA, ligase to join DNA and endonucleases to cut DNA	Question 2a (2 marks) Name the EcoR1 DNA manipulation tool and explain its function in obtaining the insulin gene.	 Answer: Restriction enzyme/Endonuclease. The function of endonuclease is to recognise and cut DNA at specific recognition sequences to isolate the insulin gene. Marking protocol: One mark for each of the above points.
Proteins as a diverse group of molecules that collectively make an organism's proteome, including enzymes as catalysts in biochemical pathways	Question 2b (1 mark) EcoR1 is an essential component of some bacteria's proteomes. Define 'proteome.'	 Answer: The complete set of proteins that is found in a cell or organism. Marking protocol: One mark for the above point.
The use of recombinant plasmids as vectors to transform bacterial cells as demonstrated by the production of human insulin	Question 2c (5 marks) Outline how the gene for human insulin is cloned using gene cloning.	 Answer: Target DNA is extracted from a cell or made using reverse transcriptase. This is cut with a specific restriction enzyme to isolate the insulin gene. Plasmids (circular DNA found in bacteria) are cut with the same restriction enzyme (to create complementary sticky ends) and the gene for ampicillin/antibiotic resistance is added. The plasmids, target DNA and DNA ligase – an enzyme that joins DNA – are mixed to enable the plasmid to incorporate the target DNA. Bacterial cells are then treated to make them permeable to the plasmids. (This is done through a heat shock/electric pulse). The bacterial cells that have taken up the plasmid are identified. This is done by placing them on an agar plate that contains ampicillin, an antibiotic. The bacterial cells that survive have taken up the plasmid that contained the gene for ampicillin resistance and are now transformed. They are then isolated and allowed to multiply to clone the gene.
		Marking protocol: One mark for each of the above points.

A group of students conducted an investigation to observe what happens when yeast is supplied with sucrose in a sealed environment. In their experiment, they used lime water which is typically colourless. When carbon dioxide gas is passed through lime water, the lime water becomes milky due to the formation of white insoluble calcium carbonate. The following method was used:

Method

- 1. Place 10g of sucrose solution into a flask.
- 2. Add 100ml of lukewarm water and stir until dissolved.
- 3. Add 2g of yeast to the sucrose solution and add a layer of paraffin oil to create an anaerobic environment, sealing the conical flask with a rubber stopper containing one hole.
- 4. Connect tubing to the rubber stopper and to a separate flask containing lime water. The tubing end that enters the separate flask should be submerged in the limewater.
- 5. Record observations of the sucrose and limewater solutions.

The students recorded their results in Table 1.

Table 1. Observations

Solution	Observation
Sucrose solution	Colour change from clear to brown liquid
	• Colour change from clear to white liquid.
Limewater solution	• Formation of precipitate.
	• Bubbles produced from tubing end submerged in limewater.

The location, inputs and the difference in	Question 3a (1 mark)	Answer:	
outputs of anaerobic	Name the biochemical	Anaerobic fermentation.	
fermentation in animals and yeasts	reaction that was occurring		
,	in the yeast.	Marking protocol:	
		One mark for the above point.	
The location, inputs and	Question 3b (1 mark)	Answer:	
the difference in outputs of anaerobic	In the limewater solution,	• Carbon dioxide.	
fermentation in animals	the students recorded the		
and yeasts the main inputs,	presence of bubbles of	Marking protocol:	
outputs and locations	what gas?	One mark for the above point.	
of glycolysis, Krebs Cycle and electron			
transport chain including ATP yield			
(details of biochemical			
pathway mechanisms are not required)			
The location, inputs and the difference in	Question 3c (1 mark)	Answer:	
outputs of anaerobic	Apart from the gas that was	• Ethanol.	
fermentation in animals and yeasts	produced, state one other	• (Two molecules of) ATP.	
the main inputs,	output of this process that		
outputs and locations of glycolysis, Krebs	was not measured in this	Marking protocol:	
Cycle and electron	experiment.	One mark for either of the above points.	
transport chain including ATP yield			
(details of biochemical pathway mechanisms			
are not required)			

The location, inputs and the difference in outputs of anaerobic fermentation in animals and yeasts the main inputs, outputs and locations of glycolysis, Krebs Cycle and electron transport chain including ATP yield	Question 3d (2 marks) Explain the purpose of this biochemical reaction in yeast with reference to ATP production.	 Answer: Fermentation occurs when oxygen is absent from the yeast's environment. Even though this means that aerobic respiration cannot occur, it enables the yeast to continue to generate energy in the form of two ATP molecules.
(details of biochemical pathway mechanisms are not required)		Marking protocol: One mark for each of the above points.

The students decided to alter the experiment to see what would happen if they repeated the experiment at different temperatures. They decided to monitor the production of the gas by observing the height of bubbles that are produced from the flask containing the limewater over 60 seconds. Their results are provided in Table 2.

Table 2. Results

Temperature (°C)	Height of bubbles
35	High
50	Moderate
60	Low

The factors that affect the rate of cellular respiration: temperature, glucose availability and oxygen concentration	Question 3e (3 marks) Analyse the students' results and explain the difference in the results between 35°C and 60°C.	 Answer: CO₂ gas production can be used as a measure of the rate of anaerobic cellular respiration (fermentation) as it is an output for this reaction.
		 At 35°C, a high height of bubbles indicates a high level of fermentation. OR
		 35°C appears to be the optimal temperature for enzymes involved in fermentation.
		• At 60°C, the active site of the enzyme may have started to change shape and, therefore, can no longer bind to its specific substrate, leading to a low height of the bubbles and hence a low gas production.
		Marking protocol: One mark for either the second or third points. One mark each for the remaining points.

Photosynthesis uses inorganic compounds to produce the organic compound glucose. There are three main groups of photosynthetic plants that differ in the ways in which they undertake the Calvin cycle – CAM, C_3 and C_4 plants. C_3 photosynthesising plants are the most abundant on Earth.

The role of Rubisco in photosynthesis, including adaptations	Question Complete			Answer:	C₃ Plants	C₄ Plants
of C_3 , C_4 and CAM plants to maximise the	comparin			Carbon Dioxide-	Rubisco	PEP carboxylase
efficiency of photosynthesis		C₃ Plants	C₄ Plants	Fixing Enzyme	Rubisco	F LF Cal DOXylase
	Carbon Dioxide- Fixing			Location of Calvin Cycle	Mesophyll cells	Bundle sheath cells
	Enzyme Location of Calvin Cycle			Marking protocol: One mark for each of th	e above points.	

CRISPR-Cas9 is a gene-editing technology that can be used to increase photosynthetic efficiency.

Potential uses and applications of CRISPR- Cas9 technologies to improve photosynthetic efficiencies and crop yields	Question 4b (2 marks) Suggest what CRSIPR-Cas9 might target to reduce photorespiration in C ₃ plants and, therefore, how this may improve photosynthetic efficiency.	 Answer: CRISPR-Cas9 might target the genes that code for Rubisco. AND This would increase its ability to bind to carbon dioxide, reducing photorespiration. OR This would decrease its ability to bind to oxygen, reducing photorespiration.
		Marking protocol: One mark for the first point. One mark for either of the following two points.

In Australia, canola can be genetically modified to be resistant to the common herbicide glyphosate. Its modification involves the insertion of a gene called the 'GOX' gene, isolated from a bacterium. The gene codes for an enzyme that enables the modified canola to break down the herbicide. *Agrobacterium tumefaciens* bacteria contain a plasmid, called the Ti plasmid (tumour-inducing), that is used to transport the 'GOX' gene into the canola.

The use of genetically modified and transgenic organisms in agriculture to increase crop productivity and to provide resistance to disease	Question 5a (2 marks) Name the vector that is used to produce GM canola and justify your reasoning.	 Answer: The Ti plasmid. A vector transports a foreign gene into cells (in this case, the Ti plasmid transports the 'GOX' gene).
		Marking protocol:
		One mark for each of the above points.
The use of genetically modified and transgenic organisms in agriculture to increase crop productivity and to provide resistance to disease	Question 5b (3 marks) Explain the difference between a genetically modified organism and a transgenic organism and justify why GM canola is considered transgenic.	 Answer: Genetically modified organisms are those that have had their genomes altered. Transgenic organisms also have their genomes altered; however, this is through the inclusion of DNA from a separate species. GM canola is transgenic as it has had its genome altered by the 'GOX' gene that was isolated from bacteria.
		Marking protocol:
		One mark for each of the above points.

COVID-19 was once an emerging disease caused by an enveloped single-stranded RNA virus. Infection occurs when the virus uses its S spike proteins to enter into cells via the ACE2 receptor. The viral RNA is then translated and suppresses the host cell's RNA so that it can translate its own.

The genetic code as a universal triplet code that is degenerate and the steps in gene expression, including transcription, RNA processing in eukaryotic cells and translation by ribosomes	Question 6a (4 marks) Outline how viral RNA is translated.	 Answer: The viral mRNA travels through the cytosol to a ribosome. The mRNA is read 3 bases at a time and its reading attracts the complementary tRNA molecules. (Translation begins with the start codon AUG). The complementary tRNA molecule brings the (methionine) amino acid to the mRNA and hydrogen bonds are formed between the base pairs of the codon and the anti-codon. The amino acid detaches from the tRNA molecule and peptide bonds form between adjacent amino acids through condensation reactions. (Translation ends once a STOP codon is reached).
		Marking protocol: One mark for each of the above points.

The role of rough endoplasmic reticulum,	Question 6b (3 marks)	Answer:		
Golgi apparatus and	Complete the following	Organelle	Role	
associated vesicles in the export of proteins from a	table by explaining the	Endoplasmic	Transports new viral protein particles	
cell via the protein	roles of the different	Reticulum	throughout the cell.	
secretory pathway	organelles in the		Stores, packages and modifies viral protein	
	production of proteins	Golgi Body	particles.	
	that are associated		Transports viral protein particles to the cell	
	with the structure of	Vesicles	membrane for exocytosis (and also between	
	COVID-19.		the endoplasmic reticulum and Golgi body).	
		Marking protocol:		
		One mark for each o	of the above points.	
The emergence of new pathogens and re-	Question 6c (1 mark)	Answer:		
emergence of known	Explain what is meant	• An emerging disease is one that is caused by a previously unknown		
pathogens in a globally connected world, including	by an emerging	and unidentified µ	pathogen.	
the impact of European	disease.			
arrival on Aboriginal and Torres Strait Islander		Marking protocol:		
peoples		One mark for the ab	pove point.	

The Australian COVID-19 vaccination programme involved the phased roll-out of the vaccine. Aboriginal and Torres Strait Islander peoples were one of the first to be offered the vaccine; however, uptake in this population was quite low as of November 2021.

The difference between natural and artificial immunity and active and passive strategies for acquiring immunity	Question 6d (2 marks) Explain what type of immunity is conferred through COVID-19 vaccination.	 Answer: The vaccine provides artificial/induced active immunity. It enables the recipient's immune system to create antibodies and memory B cells against COVID-19.
		Marking protocol:
		One mark for each of the above points.
Ways of using fossil and DNA evidence (mtDNA and	Question 6e (1 mark)	Answer:
whole genomes) to explain	Outline one strategy	 Community elders could have been educated to provide a trusted
the migration of modern human populations around	that could have been	source of information to the Indigenous community.
the world, including the migration of Aboriginal and Torres Strait Islander	used to increase vaccine uptake by	 Vaccine doses could have been brought directly to central places in Indigenous communities.
populations and their connection to Country and Place. scientific and social	Indigenous Australians.	 Media campaigns that included Indigenous Australians could have been created.
strategies employed to identify and control the		Marking protocol:
spread of pathogens,		One mark for any one of the above points or any other reasonable
including identification of the pathogen and host, modes of transmission and measures to control transmission		answer.

Systemic Lupus Erythematosus (SLE) is an autoimmune disease that produces widespread inflammation in many organs of the human body. It is thought to be triggered by both genetic (in susceptible individuals) and/or environmental factors (such as UV radiation, viruses, medications and oestrogen). The disease causes antigenantibody complexes to form and deposit in tissues and organs, which produces inflammation. Scientists have found that B cells play a significant role in contributing to this disease with almost all affected individuals showing the presence of specific antibodies, called antinuclear antibodies, in their blood and tissues.

The development of immunotherapy strategies, including the use of monoclonal antibodies for the treatment of autoimmune diseases and cancer	Question 7a (3 marks) Explain the role of B cells in producing antinuclear antibodies in SLE.	 Answer: Specific B cells identify foreign antigens and undergo clonal selection and expansion. Plasma cells are then synthesised, producing antinuclear antibodies and forming antigen-antibody complexes that deposit in tissue. Memory B cells are also produced, causing continuous disease through the production of antinuclear antibodies. Marking protocol: One mark for each of the above points.
The development of immunotherapy strategies, including the use of monoclonal antibodies for the treatment of autoimmune diseases and cancer	Question 7b (4 marks) Recently, scientists have produced a monoclonal antibody treatment for SLE that targets the CD20 protein on B cells. CD20 is involved in B cell activation and proliferation. The monoclonal antibody that is produced induces lysis, depleting B cells and, therefore, reducing the symptoms of SLE. Explain how monoclonal antibodies are produced and how it may be effective in treating SLE.	 Answer: In producing monoclinal antibodies, an antigen is injected into mice so that they are induced to produce antibodies that are specific to the antigen. The B cells that produce antibodies are isolated and are fused with a tumour cell to form a hybridoma. Hybridomas are cultured in a medium and prompted to reproduce, creating the monoclonal antibody. The monoclonal antibody targets the defective B cells, causing lysis; this can help to prevent the specific B cells from secreting antinuclear antibodies. Marking protocol: One mark for each of the above points.

Bordetella pertussis is a gram-negative bacterium that causes whooping cough, a severe respiratory infection. It can be deadly in babies under the age of one year old. The pathogen causes disease by releasing toxins that damage cilia, leading to the inflammation of the airways; this causes coughing, a runny nose and, later in the disease progression, vomiting as well as coughing fits that produce high-pitched whooping sounds. In babies, they may not cough at all but, instead, completely stop breathing. Family members, such as parents, grandparents and siblings of the babies, are often the cause of the baby's infection.

Babies can be vaccinated from the age of six weeks old with five shots, occurring between the ages of six weeks and four years. This provides protection that lasts for approximately 10 years, with a booster shot given as part of the high school vaccination programme in year seven.

A free vaccination programme was introduced to help reduce the spread and the severity of the disease. It targeted pregnant women from 20-31 weeks gestation and their partners and/or primary carers, who are all eligible for free vaccination.

Vaccination programs and their role in maintaining	Question 8a (2 marks)	Answer:
herd immunity for a specific	Name the most likely	 Direct transmission from person-to-person.
disease in a human population	primary mode of	• This type of transmission most likely occurs through droplets that
scientific and social	transmission of the	contain the bacteria spreading by coughing.
strategies employed to identify and control the	pathogen that causes	
spread of pathogens,	whooping cough.	Marking protocol:
including identification of the pathogen and host, modes of transmission and measures to control transmission	Justify your answer.	One mark for each of the above points.
Scientific and social	Question 8b (2 marks)	Answer:
strategies employed to identify and control the	Outline how scientists	• Gram-negative bacteria contain an outer membrane that is
spread of pathogens,	identified Bordetella	composed of lipopolysaccharides.
including identification of the pathogen and host,	pertussis as a gram-	• This means that, when stained, the bacteria do not take up the
modes of transmission and measures to control transmission	negative bacterium.	violet stain but instead appear pink.
		Marking protocol:
		One mark for each of the above points.
Vaccination programs and	Question 8c (2 marks)	Answer:
their role in maintaining herd immunity for a specific	Explain the importance	Vaccination induces artificial active immunity, enabling pregnant
disease in a human	of women being	women to protect themselves from disease.
population the difference between	vaccinated while	• It also enables natural passive immunity against the disease as
natural and artificial immunity and active and	pregnant. Reference	antibodies are passed from the mother to her child via the placenta
passive strategies for	both the mother and	and during breastfeeding.
acquiring immunity	her child in your	
	response.	Marking protocol:
		One mark for each of the above points.

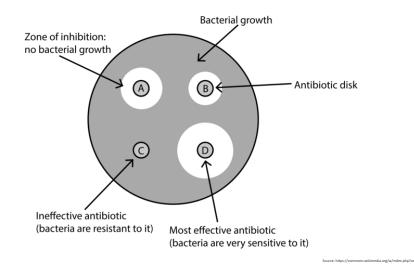
Vaccination programs and	Question 8d (2 marks)	Answer:	
their role in maintaining herd immunity for a specific disease in a human population	Define herd immunity and suggest an improvement to this vaccination programme that could contribute to herd immunity.	 Herd immunity occurs when population members without immunity receive protection against infection due to a high proportion of the population being immune. AND This could be achieved for whooping cough through a programme that vaccinates the entire population and where the entire population also receives a regular booster dose, if needed, whenever this would be required. OR This could be achieved for whooping cough through making the vaccine free for all family members. OR This could be achieved for whooping cough through ensuring that early-childhood carers and teachers are vaccinated and boosted for free. 	
		Marking protocol: One mark for each of the above points.	
		One mark for the first point and one additional mark for one of points two, three or four.	

Australia and Papua New Guinea were once joined by a land bridge with the supercontinent Sahul. Our African ancestors are thought to have migrated to Sahul and spread from east to west perhaps 50,000 years ago. This was revealed by DNA studies that were conducted on Aboriginal and Torres Strait Islander peoples. These studies also showed a large amount of genetic variation between the various populations around Australia.

Discovered in 1974, Mungo Man is the oldest human fossil skeleton that has ever been found in Australia and is dated to be 42,000 years old. Scientists studied his burial site, finding that he was very carefully and ritually laid out and sprinkled with red ochre upon

his death.

urre https://commons.wikimedia.org/wiki/File-Mungo. Man.ing


		Source: https://commons.wikimedia.org/wiki/Pie.htmgo_Man.jpg
Ways of using fossil	Question 9a (2 marks)	Answer:
and DNA evidence (mtDNA and whole	Name the absolute dating	• Carbon dating.
genomes) to explain the migration of	technique that was most	• Carbon dating is used to directly date fossils up to 60,000 years old;
modern human	likely used to date Mungo	the Mungo Man fossil is 42,000 years old.
populations around the world, including	Man. Explain your	
the migration of	reasoning.	Marking protocol:
Aboriginal and Torres Strait Islander populations and their connection to Country		One mark for each of the above points.
and Place		

Ways of using fossil and DNA evidence	Question 9b (3 marks)	Answer:	
(mtDNA and whole	Outline three	• A low-oxygen environment to prevent decomposition by	
genomes) to explain the migration of	requirements for fossil	microorganisms.	
modern human populations around the world, including	formation.	 A rapid burial to prevent the disturbance and decomposition of the fossil by scavengers. 	
the migration of Aboriginal and Torres		 Hard body parts that will not decompose rapidly. 	
Strait Islander		• A non-acidic environment as acid contributes to decomposition.	
populations and their connection to Country and Place		 A rapid burial in freezing environments to instantly preserve the organism. 	
		• High pressure to enable petrification.	
		Marking protocol:	
		One mark for any of the above points, to a maximum of three.	
Ways of using fossil and DNA evidence	Question 9c (1 mark)	Answer:	
(mtDNA and whole	Suggest one reason for the	 Indigenous Australians have been here for at least 50,000 years, 	
genomes) to explain the migration of	high amount of genetic	allowing for a greater number of mutations to accumulate in their	
modern human	diversity amongst	DNA over time than non-Indigenous Australians.	
modern human populations around the world, including the migration of Aboriginal and Torres Strait Islander	diversity amongst Indigenous Australians.		
populations around the world, including the migration of Aboriginal and Torres		DNA over time than non-Indigenous Australians.There may have been reduced gene flow between communities that spread across Australia, allowing genetic differences to	
populations around the world, including the migration of Aboriginal and Torres Strait Islander populations and their connection to Country		 DNA over time than non-Indigenous Australians. There may have been reduced gene flow between communities that spread across Australia, allowing genetic differences to accumulate. Communities adapted to their different environments, favouring different phenotypes in different ways, leading to increased genetic 	

Lord Howe Island is a very small island that is located east of mainland New South Wales. It has been geographically isolated for a long time and is home to two species of palm trees – *Howea belmoreana* and *Howea forsteriana* – that grow closely to each other but are reproductively isolated. Scientists have genetically analysed the two species to try to determine how they came to be different species. They found that they both originated from one species on the island, with no evidence of geographical isolation between the two species; however, they have different flowering times. Research has shown that *H.belmoreana* and *H.forsteriana* prefer different soil types and this has influenced each species' flowering time. Scientists have suggested this difference in flowering time resulted in their eventual speciation.

Evidence of speciation as a consequence of isolation and genetic divergence, including Galapagos finches as an example of allopatric speciation and Howea palms on Lord Howe Island as an example of sympatric speciation	Question 10a (2 marks) Explain how sympatric and allopatric speciation differ.	 Answer: Allopatric speciation involves the geographical separation of a species, preventing gene flow and resulting in the development of two different species. Conversely, sympatric speciation involves the development of a new species from an existing one while both continue to inhabit the same geographic region.
		Marking protocol:
		One mark for each of the above points.
Evidence of speciation as a consequence of isolation and genetic divergence, including Galapagos finches as an example of allopatric speciation and Howea palms on Lord Howe Island as an example of sympatric speciation	Question 10b (3 marks) Explain how these two palm trees may have become different species.	 Answer: A population of Howea palms initially existed and showed variation in flowering times. Different flowering times were influenced by variation in soil type, and this led to some individuals having a selective advantage in their environment. The difference in flowering times contributed to reproductive isolation and a lack of gene flow. Over time, two different gene pools were created, and individuals were then no longer able to produce fertile offspring, resulting in the two different species.
		Marking protocol: One mark for each of the above points.

Students were placed into groups of three and conducted an investigation to see which concentration of the antibiotic ampicillin would be the most effective in preventing the growth of *E. coli*, a bacterium. They used serial dilutions of ampicillin up to 2mg/mL and measured the zone of inhibition radius (ZOI - the area in which the bacteria did not grow) in millimetres after incubating the bacteria for 10 hours. The ZOI was measured with a ruler. A diagram demonstrating this information is shown below.

Each student took turns to perform the method, with each student responsible for carrying out only one of the three trials. The students were provided with the method below and recorded their results in the table as shown.

Method:

- 1. Use a Bunsen burner to create a sterile environment.
- 2. Label each agar plate with the different ampicillin concentrations.
- 3. Use a sterile swab to transfer bacteria from the broth to the agar and rotate the plate as the bacteria are spread.
- 4. Use sterile forceps to dip a paper disc into the corresponding ampicillin concentration and place this onto the agar plate.
- 5. Seal the lid of the plate with tape.
- 6. Repeat steps one to five for each ampicillin concentration.
- 7. Incubate at 35° C for 10 hours.
- 8. Using a ruler, measure the ZOI radius (mm) for each concentration of ampicillin.

Table 1. Student Results

	Zone of Inhibition (mm)		
Concentration of Ampicillin (mg/mL)	Trial 1	Trial 2	Trial 3
0.125	7	6	1
0.25	11	11	14
0.5	15	14	13
1	20	20	21
2	30	30	18

Characteristics of the selected scientific methodology and method, and appropriateness of the use of independent, dependent and controlled variables in the selected scientific investigation The accuracy, precision, reproducibility, repeatability and validity of measurements	Question 11a (2 marks) Identify the dependent and independent variables in this experiment. Question 11b (1 mark) Explain why the experiment was repeated.	 Answer: The dependent variable is the zone of inhibition (mm). The independent variable is the concentration of ampicillin (mg/mL). Marking protocol: One mark for each of the above points. Answer: Repeating the experiment increases the reliability of the results. Marking protocol: One mark for the above point.
The accuracy, precision, reproducibility, repeatability and validity of measurements the key findings and implications of the selected scientific investigation	Question 11c (2 marks) Identify which concentration of ampicillin has the most precise data. Justify your answer.	 Answer: 1mg/mL was the most precise concentration. Precision refers to how closely two or more results agree with each other. Trials one and two showed ZOI's of 20mm whilst trial three had a ZOI of 21mm. Marking protocol: One mark for each of the above points.
Analyse and evaluate bioethical issues using relevant approaches to bioethics and ethical concepts, including the influence of social, economic, legal and political factors relevant to the selected issue	Question 11d (2 marks) After the experiment, one of the students commented that it might be a good idea to infect humans with <i>E.coli</i> and then try different concentrations of the antibiotic ampicillin to determine which is most effective. However, a second student remarked that this may breach the ethical principle of non- maleficence. Outline whether or not you think the second student is correct and justify your response.	 Answer: Yes, the second student is correct. Non-maleficence refers to avoiding the causation of harm. Infecting humans with E.coli may cause them to become unwell and cause them harm, thus breaching this ethical principle (and this can be avoided by carrying out an experiment such as the one in the stimulus). Marking protocol: One mark for each of the above points.

aced

VCE BIOLOGY Written Examination ANSWER SHEET – 2022

Student name:

Use a **PENCIL** for **ALL** entries. For each question, shade the box which indicates your answer.

Marks will **NOT** be deducted for incorrect answers.

NO MARK will be given if more than ONE answer is completed for any question.

If you make a mistake, **ERASE** the incorrect answer – **DO NOT** cross it out.

1	A B C D	15 A B C D	29 A B C D
2	A B C D	16 A B C D	30 A B C D
3	A B C D	17 A B C D	31 A B C D
4	A B C D	18 A B C D	32 A B C D
5	A B C D	19 A B C D	33 A B C D
6	A B C D	20 A B C D	34 A B C D
7	A B C D	21 A B C D	35 A B C D
8	A B C D	22 A B C D	36 A B C D
9	A B C D	23 A B C D	37 A B C D
10	A B C D	24 A B C D	38 A B C D
11	A B C D	25 A B C D	39 A B C D
12	A B C D	26 A B C D	40 A B C D
13	A B C D	27 A B C D	
14	A B C D	28 A B C D	