aced

Units 3&4 Biology Practice Exam 2022 – Trial 2 – Assessment Guide

Section A

VCAA Key	Question	An	iswer guide
Knowledge			
Inputs, outputs and locations of the light	Question 1	В	Oxygen gas is an output of
dependent and light	Students set up a photosynthesis experiment by placing		photosynthesis.
independent stages of photosynthesis in C_3	aquatic plants into sealed tubes, submerging them in water.		A is incorrect as you would
plants (details of	They measured the rate of photosynthesis by counting the		expect a higher rate of
biochemical pathway mechanisms are not	bubbles that were produced by the plant. Which of the		photosynthesis when the
required)	following statements is correct?		plant is exposed to greater
The factors that affect	A. fewer bubbles would be produced by a plant that was		levels of sunlight and a
the rate of	placed in direct sunlight than a plant that was in a cool,		higher temperature.
photosynthesis: light availability, water	dark room		C is incorrect as accuracy
availability, temperature and	B. the bubbles that the students measured were made of		describes how close the
carbon dioxide	oxygen gas		experimental values are to
concentration	C. the experiment needs to be repeated three times in order		the 'true' value.
	to be accurate		D is incorrect as water is an
	D. the water is only used to suspend the plants; it is not an		input for photosynthesis.
	input of photosynthesis		
The characteristics and	Question 2	В	Before cells can undergo

clonal selection, they need

activation by a helper T

The viral antigen is

cell; hence, D is incorrect.

displayed on the MHC-II

protein, which would be

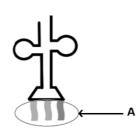
and triggers the cell-

and C are incorrect.

recognised by a naïve T cell

mediated response; thus, A

roles of the components of the adaptive immune response against both extracellular and intracellular threats including the actions of B lymphocytes and their antibodies, helper T and cytotoxic T cells


In the body, cells that are infected with a virus present the viral antigen on their MHC-II proteins. These antigens can then be identified by lymphocytes as part of the specific immune response.

Which of the following lymphocytes would recognise a viral antigen that is displayed by body cells and what would be the next step in the immune response pathway?

- A. a naïve B cell; a helper T cell will release cytokines to activate the naïve B cell
- B. a naïve T cell; a helper T cell will release cytokines to activate cytotoxic T cells
- C. a naïve B cell; the naïve B cell will undergo clonal selection, producing memory B cells and plasma cells
- D. a naïve T cell; the naïve T cell will undergo clonal selection, producing memory T cells and cytotoxic T cells

The general factors that impact on enzyme	Que	estion 3	С	Non-competitive inhibitors
function in relation to	An	on-competitive enzyme inhibitor will		bind outside the enzyme's
photosynthesis and cellular respiration:	Α.	bind to the active site.		active site and change the
changes in	В.	attach to the substrate.		shape of the active site so
temperature, pH, concentration,	C.	change the shape of the active site.		that substrate cannot bind
competitive and non- competitive enzyme inhibitors	D.	not work below 37°C.		to it.
initial cors				
The shared	Que	estion 4	D	Bipedalism is the defining
characteristics that define mammals,	The	e key distinguishing feature between hominins and primates		distinguishing
primates, hominoids and hominins	is			characteristic between the
	Α.	a large cranium relative to body weight.		two taxa.
	В.	opposable thumbs.		Opposable thumbs, a large
	C.	binocular eyes.		cranium and binocular eyes
	D.	bipedalism.		are shared characteristics
				between hominins and
				primates.

Use the following information to answer Questions 5 and 6. Below is a diagram of a nucleic acid involved in gene expression.

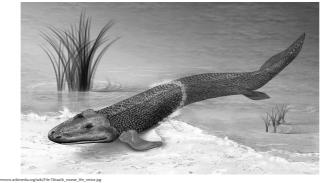
	Adapted fro	om Christinelmiller, CC BY-SA 4.0 https://creativecommons.org/licenses/by-sa/4.0 , via Wikimedia Commons.		
Nucleic acids as information molecules	Qu	estion 5	С	The molecule is tRNA. It
that encode	Wh	ich option describes the role of this nucleic acid?		brings amino acids to
instructions for the synthesis of proteins:	Α.	it encodes genetic information and carries it out of the		ribosomes and has a
the structure of DNA,		nucleus		distinctive structure, with
the three main forms of RNA (mRNA, rRNA and	В.	it moves genetic information into the nucleus		areas of complementary
tRNA) and a	C.	it brings amino acids to ribosomes		base pairing and 'bubbles'
comparison of their respective nucleotides	D.	it is a component in ribosome structure		of single stranded unpaired
				bases.

Nucleic acids as information molecules that encode		estion 6 he diagram, what is indicated by 'A?'	В	The 'A' in the image indicates the set of three
instructions for the synthesis of proteins: the structure of DNA, the three min forms of RNA (mRNA, rRNA and	А. В. С.	codon anticodon mRNA		nucleotides at the bottom of the tRNA molecule. This is an anticodon that forms
tRNA) and a comparison of their respective nucleotides	D.	deoxyribose nucleotide		complementary base pairs with the corresponding codon of mRNA.

Question 7

Evidence for major trends in hominin evolution from the genus Australopithecus to the genus Homo: changes in brain size and limb structure

fossils


- Homo sapiens' larger brain size
- is caused by the cerebrum becoming more folded. Α.
- Β. has led to lesser social interaction and caregiving.
- C. has reduced the energy needs of the human body.
- is caused by an increase in the size of the sagittal crest. D.
- The cerebrum became more folded, allowing greater brain sizes. A larger brain sized has increased alongside social capacity and has greater energy requirements. The sagittal crest has decreased as brain size has grown in Homo sapiens.

show relationships between

species.

Α

Use the following information to answer Questions 8 – 10.

A fossil, known as the Tiktaalik fossil, was discovered in 2004. It had gills and fins, but it also had weight-bearing limbs. It is thought to be an evolutionary link between water- and landdwelling species

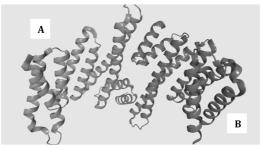
	aweiling species.		
Changes in species over geological time as evidenced from the fossil record: faunal (fossil) succession, index and transitional fossils, relative and absolute dating of fossils	 Question 8 Which of the following evolutionary timelines is in the correct chroological order? A. prokaryotes, eukaryotes, multicellular organisms, water-dwelling animals, the Tiktaalik species, land-dwelling animals, mammals, flowering plants B. prokaryotes, multicellular organisms, eukaryotes, water-dwelling animals, the Tiktaalik species, land-dwelling animals, mammals, flowering plants C. prokaryotes, multicellular organisms, eukaryotes, mammals, water-dwelling animals, the Tiktaalik species, land-dwelling animals, water-dwelling animals, the Tiktaalik species, land-dwelling animals, the Tiktaalik species, land-dwelling animals, the Tiktaalik species, land-dwelling animals, flowering plants D. prokaryotes, eukaryotes, multicellular organisms, water-dwelling animals, the Tiktaalik species, land-dwelling animals, flowering plants 	A	The Tiktaalik species was placed between water- and land-dwelling animals in all options; only option A had the correct order of the other organisms in the timeline of Earth's evolutionary history.
Changes in species over geological time as evidenced from the fossil record: faunal (fossil) succession, index and transitional fossils, relative and absolute dating of	 Question 9 Which fossils provide an evolutionary link between previously identified species and known species? A. trace fossils B. index fossils 	D	Transitional fossils have traits of both the ancestor and derived (recent) species; they often fill evolutionary 'gaps' that

- Β. linking fossils C.
 - D. transitional fossils

Changes in species over geological time as evidenced from the fossil record: faunal (fossil) succession,	Question 10 Which of the following options is not a requirement for fossilisation?	D	Fossilisation requires low oxygen conditions.
index and transitional	A. rapid coverage by sediment		
fossils, relative and absolute dating of	B. cool climate		
fossils	C. low light		
	D. high oxygen availability		
The innate immune	Question 11	В	Complement proteins and
response including the	Multiple of the fallowing statements also with a inflormmentary.		nhagooutos can ontor the

response including the	Qu		D	completitent proteins und
steps in an inflammatory response		ich of the following statements about the inflammatory		phagocytes can enter the
and the characteristics and roles of macrophages, neutrophils, dendritic cells, eosinophils, natural killer cells, mast cells, complement proteins and interferons	res A. B. C. D.	ponse is correct? the steps in the inflammatory response are inflammation, vasodilation and migration in the migration step, complement proteins and phagocytes work to destroy pathogens vasodilation causes blood vessels to shrink and blood to build up, leading to swelling and redness at the affected site mast cells signal natural killer (NK) cells		site from the bloodstream and combat any pathogens that are present. A is incorrect because the first step in the response is initiation. C is incorrect because blood vessels widen during vasodilation.
				D is incorrect because mast cells release histamine, not signal natural killer cells.
The general factors	Qu	estion 12	D	Enzyme activity will
that impact on enzyme function in relation to photosynthesis and cellular respiration:	Wh	ien a fixed number of enzymes have an unending supply of ostrate, their activity will	-	increase with increasing concentrations of substrate
changes in temperature, pH, concentration,	A.	decrease because too much substrate availability will overwhelm the system.		until all of the enzymes are occupied, at which point
competitive and non-	В.	continue to rise as long as there is an unending supply of		their activity will plateau.

B. continue to rise as long as there is an unending supply of substrate.


competitive enzyme

inhibitors

- **C.** remain unchanged as only environmental factors, like temperature, can change the rate of enzyme activity.
- **D.** rise until it reaches a plateau when no further enzymes are available.

Scientific and social strategies employed to identify and control the spread of pathogens,	Wh	estion 13 ich of the following is not a method of disease nsmission?	В	All options apart from B are methods of disease transmission.
including identification of the pathogen and host, modes of transmission and	А. В.	airborne transmission antibody transmission		
measures to control transmission	C. D.	vector transmission faecal-oral transmission		

Use the following information to answer Questions 14 and 15. Insulin, as indicated in the diagram below, is a protein that is composed of two polypeptide chains (chains A and B) linked by disulphide bonds.

Amino acids as the monomers of a polypeptide chain and the resultant hierarchical levels of structure that give rise to a functional protein

Question 14

C.

D.

What is the hierarchical level of the protein structure seen in chain A? A. primary Β. secondary

Chain A is a 3D folded polypeptide – having a *tertiary structure – that is* comprised of some secondary structures. It associates with another polypeptide to form the overall quaternary structure of insulin.

Insulin is a peptide

hormone.

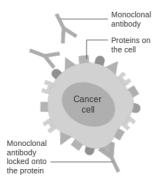
С

В

Proteins as a diverse aroup of molecules that collectively make an organism's proteome, including enzymes as catalysts in biochemical

pathways

Question 15


tertiary

quaternary

What type of protein is insulin?

- a biochemical enzyme Α.
- a peptide hormone Β.
- C. a regulatory protein
- a structural protein D.

Use the following information to answer Questions 16 – 18.

Monoclonal antibodies, as seen in the diagram, can be used to treat cancer as well as other autoimmune diseases though a variety of approaches.


	<i>,</i>		
Que	estion 16	Α	Tumour cells, like other
The	e proteins on the cancerous cell to which monoclonal		body cells, express MHC-I
ant	ibodies attach are known as		on their surface which
Α.	MHC-I proteins.		MHC-1 proteins attach to.
В.	MHC-II proteins.		
C.	pathogens.		
D.	non-self antigens.		
	The ant A. B. C.	B. MHC-II proteins.C. pathogens.	 The proteins on the cancerous cell to which monoclonal antibodies attach are known as A. MHC-I proteins. B. MHC-II proteins. C. pathogens.

The development of	Question 17	С	Monoclonal antibodies do
immunotherapy strategies, including the use of monoclonal	Which of the following options is not an approach that		not interact with helper T
	monoclonal antibodies use to combat cancer?		cells and helper T cells
antibodies for the treatment of autoimmune diseases	A. binding to cancerous cells and marking them as foreign so		cannot induce apoptosis.
and cancer	that they are targeted by natural killer (NK) cells		
	B. binding to cancerous cells and interacting with		
	complement proteins to form membrane attack		
	complexes		
	C. binding to cancerous cells and interacting with helper T		
	cells to induce the external apoptosis pathway		
	D. carrying radioactive isotopes or drugs to cancerous cells		
	by conjugated monoclonal antibodies		
The difference between	Question 18	В	Antibodies are considered
natural and artificial immunity and active	A patient receiving treatment with monoclonal antibodies		passive immunity as the
and passive strategies for acquiring immunity	receives what type of immunity?		antibodies are not
Jor acquiring immunity	A. natural passive immunity		produced by the patient's
	B. artificial passive immunity		own body. Giving them as a
	C. natural active immunity		treatment rather than
	D. artificial active immunity		having them pass from
			mother to child makes this
			artificial passive immunity.
	Use the following information to answer Questions $19 - 21$.		
	Barnacles are attached to rocks and cannot travel to avoid		
	natural disasters or to mate with other barnacle populations.		
	A heatwave in a small coastal town led to the dark barnacles		
	along the shoreline dying off. The lighter-grey barnacles were		
	more likely to survive and now, the population is mostly		
	comprised of light-grey barnacles.		
Causes of changing allele frequencies in a	Question 19	С	This is an example of the
population's gene pool,	What occurred in this population?		bottleneck effect (when a
including environmental selection	A. natural selection		natural disaster kills off a
pressures, genetic drift and gene flow; and	B. gene flow		large portion of the
mutations as the source	C. bottleneck effect		population and changes th
of new alleles	D. viral drift		allele frequencies in that population).
Courses of theme i			
Causes of changing allele frequencies in a population's gene pool, including environmental selection	Question 20	Α	Gene flow (the movement
	What is unable to occur in the barnacle population due to its		of alleles between
	fixed position?		populations) cannot occur
pressures, genetic drift and gene flow; and	A. gene flow		for the stationary
mutations as the source of new alleles	B. natural selection		barnacles. They can still
oj new ulleles	C. genetic drift		undergo natural selection,
	D. speciation		genetic drift and speciation
			as a single population.

Biological consequences of changing allele	Question 21	D	Bottleneck events and a
	How would the mass deaths of the dark barnacles and the		lack of gene flow both
frequencies in terms of increased and	barnacles' fixed positions likely affect the genetic diversity of		reduce allele frequencies,
decreased genetic diversity	the barnacle population?		leading to lower genetic
uversity	 A. it would increase the frequency and number of unique alleles, leading to greater genetic diversity 		diversity.
	 B. it would reduce the frequency and number of unique alleles, leading to greater genetic diversity 		
	C. it would increase the frequency and number of unique alleles, leading to lower genetic diversity		
	D. it would reduce the frequency and number of unique		
	alleles, leading to lower genetic diversity		
The use of recombinant	Question 22	В	The antibiotic resistance
plasmids as vectors to transform bacterial	What is the function of having an antibiotic resistance gene in	2	gene is already present in
cells as demonstrated by the production of	a plasmid for bacterial transformations?		the plasmid and will
human insulin	A. to activate the GFP gene in plasmids		provide antibiotic
	B. to select for bacteria that have taken up the plasmid		resistance to the bacteria
	C. to ensure that the gene of interest has been inserted into the plasmid		that take up the plasmid, whether or not the gene o
	D. to kill off any recombinant plasmids		interest is inserted. This allows scientists to grow and select only bacteria with the plasmid when plated on an antibiotic
			medium.
Evidence of relatedness between species:	Question 23	В	Homologous structures ar
structural morphology – homologous and vestigial structures; and	Cat limbs and whale fins both developed from the same structures in shared ancestors, as indicated in the diagram		derived from a common ancestor and are still foun

molecular homology – DNA and amino acid sequences

below. Cat

in current species.

What is this an example of?

- A. vestigial structures
- Β. homologous structures
- analogous structures C.
- **D.** trace structures

The human fossil record as an example of a	Que	estion 24	С	Neanderthals and humans
classification scheme	Pre	sent day Europeans and Asians have around 1-3%		are thought to have
that is open to differing interpretations that are	nea	nderthal DNA. This suggests that		interbred due to the 1-3%
contested, refined or	Α.	modern Homo sapiens are descended from neanderthals.		neanderthal DNA in certain
replaced when challenged by new	В.	neanderthals and Homo sapiens experienced genetic drift		modern humans. They
evidence, including		between populations.		would have had to have
evidence for interbreeding between	C.	neanderthals and some humans lived at the same physical		lived at the same location
Homo sapiens and Homo neanderthalensis		location at the same time.		at the same time to
and evidence of new putative Homo species	D.	neanderthals do not have mtDNA.		interbreed.

Antigenic drift refers to

changes in viruses, not

С

Consequences of

interferons

bacterial resistance and

Question 25

viral antigenic drift and Antibiotic-resistant bacteria pose a significant public health

				5 /
shift in terms of ongoing challenges for	issu	e. Which of the following does not contribute to this issue?		bacteria. Natural selection,
treatment strategies	Α.	natural selection acting on bacteria		overprescribing and
and vaccination against pathogens	В.	overprescribing or inappropriately prescribing antibiotics		stopping a course of
	C.	antigenic drift changing surface antigens		antibiotics prematurely,
	D.	a patient stopping a course of antibiotics as soon as		rather than finishing it
		symptoms clear		completely, contribute to
				antibiotic resistance.
The innate immune response including the	Que	estion 26	В	Body cells release
steps in an	What is not a role of complement proteins?			interferons to neighbouring
inflammatory response and the characteristics	Α.	attracting phagocytes to pathogens		cells, not complement
and roles of	В.	releasing interferons to neighbouring cells		proteins.
macrophages, neutrophils, dendritic	C.	forming membrane attack complexes (MACs)		
cells, eosinophils, natural killer cells, mast	D.	sticking to the outside of pathogens to aid recognition		

Inputs, outputs and locations of the light dependent and light independent stages of photosynthesis in C ₃ plants (details of biochemical pathway mechanisms are not required)	 Question 27 The light-independent reaction of photosynthesis A. always occurs in mesophyll cells. B. can only occur at low temperatures. C. is also known as the Calvin cycle. D. uses sunlight to split H₂O. 	С	The light-independent reaction is also often known as the Calvin cycle. It does not only occur in mesophyll cells, and it can occur at a wider range than 'low' temperatures. The
required)	D. uses sunlight to split H ₂ O.		Ū.

Use the following information to answer Questions 28 and 29.

U	UUUU UUUC UUUA UUUG CUU	phe -	UCU UCC UCA	ser	UAU UAC	A tyr	UGU UGC	G cys	Third Base	
U	UUC UUA UUG		UCC	ser		tyr		cys	U	
U	UUA UUG		UCA	ser	UAC	tyr	ucc	cys		
	UUG	leu .		ser			UGC		С	
		leu			UAA	STOP	UGA	STOP CODON	A	
_	CUU		UCG		UAG	CODON	UGG	trp	G	
	000		CCU		CAU	his	CGU		U	
c	CUC		CCC	pro	CAC	nis	CGC	- arg	с	
	CUA	leu	CCA		CAA	ala	CGA		А	
	CUG		CCG		CAG	gln	CGG		G	
	AUU		ACU		AAU	asn	AGU	ser	U	
A	AUC	ile	ACC	thr	AAC	dSTI	AGC	ser	С	
	AUA		ACA	unr	AAA	- lys	AGA	250	А	
	AUG	met (START CODON)	ACG		AAG	iys	AGG	arg	G	
	GUU		GCU		GAU	250	GGU		U	
G	GUC	val	GCC	212	GAC	asp	asp	GGC	gly	С
	GUA	val GCA ala GAA glu glu	alu	GGA	8iy	А				
	GUG		Bin	GGG		G				

mRNA CGAUGAAAACUACCUCGUAAGGAG

The genetic code as a universal triplet code that is degenerate and the steps in gene expression, including transcription, RNA processing in eukaryotic cells and translation by ribosomes

The role of rough

endoplasmic reticulum,

Golgi apparatus and associated vesicles in

the export of proteins

from a cell via the

protein secretory

pathway

Question 28

Question 29

A.

endoplasmic reticulum?

plasma membrane

secretory vesicle

What is the correct amino acid sequence that would be produced if the mRNA sequence above was translated? **A.** arg

Which of the following correctly lists the movement of

secretory vesicle, Golgi apparatus, transport vesicle,

B. Golgi apparatus, transport vesicle, plasma membrane,

proteins after translation by ribosomes on the rough

- **B.** met lys thr thr ser
- C. arg-cys-lys-leu-pro-lys-glu
- D. met lys thr thr ser tyr

- **B** Protein translation begins with Met (AUG) and ends with a stop codon. The other options have mistranslated stop codons or started at the incorrect reading frame.
- C Transport vesicles travel between the rough endoplasmic reticulum and the Golgi apparatus, where proteins are folded and modified, before a secretory vesicle transports the proteins to the plasma membrane for exocytosis.
- **C.** transport vesicle, Golgi apparatus, secretory vesicle, plasma membrane
- D. plasma membrane, secretory vesicle, Golgi apparatus, excretory vesicle
- Physical, chemical and **Question 30** Cilia in the airways are a Л microbiota barriers as physical barrier in animals. Which of the following is not a chemical barrier in animals? preventative mechanisms of All others are chemical Α. acidic sweat pathogenic infection in barriers. animals and plants Β. lysozyme enzymes in tears C. stomach acid D. cilia in the airways

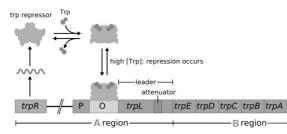
Key Science Skills	Que	estion 31		В	The group receiving the
	A st	udy wanted to assess the e	ffectiveness of a new antiviral		drug is the experimental
	dru	g on the severity of sympto	ms of adults infected with SARS		group, the control group
	Cov	-19. Two groups of infected	patients of equal size were		does not receive the drug,
	crea	ated. One group received ar	n antiviral drug and one group		the other two are not
	rece	eived just a sugar pill, along	side general monitoring of their		correct terms.
	hea	Ith. The group that received	d the antiviral drug was the		
	Α.	control group.			
	В.	experimental group.			
	C.	independent group.			
	D.	variable group.			
	U	se the following information	n to answer Questions 32 – 34.		
	Scie	entists are attempting to cre	eate future-ready wheat by		
	intr	oducing drought-tolerance			
	con	nmon wheat (<i>Triticum aesti</i>			
	fror	n common wheat crops tha			
	rain	fall as well as Wild Emmer			
	whi	ch is known for its drought			
The use of genetically modified and transgenic organisms in agriculture to increase crop productivity and to	Source May Live Median comparatively 2011 (34/04/2) Question 32				Transgenic organisms are
	Which of the following experiments conducted with common				genetically modified
	wheat will create a transgenic organism?				organisms with genes that
provide resistance to		Species From Which the	Method of Gene Introduction]	are introduced from a
disease		Gene is Sourced			different species.
Potential uses and applications of CRISPR- Cas9 technologies to improve photosynthetic efficiencies and crop yields	Α.	Common Wheat (T.			B is not transgenic; it has a
		aestivum)	Crossbreeding Plants		gene from the same species
	В.	Common Wheat (T.		1	and A and C are not GMOs.
		aestivum)	CRISPR-cas9		
	C.	Wild Emmer Wheat (T.	Crossbrooding Diants	1	
		dicoccoides)	Crossbreeding Plants		
	D.	Wild Emmer Wheat (T.	CRISP-cas9		

Identify and analyse experimental data qualitatively, handing where appropriate concepts of: accuracy, precision, repeatability, reproducibility and validity of measurements; errors (random and systematic); and certainty in data, including effects of sample size in obtaining reliable data

Question 33

The modified crops were then grown in threes in drought conditions at two temperature points. Wheat yields were measured at the end of the season.

Which of the following measurements are the most precise?


	Crop and Temperature	Crop Yield (tonnes per
		hectare)
Α.	Common Wheat at 37°C	1.674, 1.766, 1.507
В.	Common Wheat at 41°C	1.354, 1.357, 1.349
C.	Wild Emmer Wheat at	2.011, 1.988, 2.107
	37°C	
D.	Wild Emmer Wheat at	1.832, 1.932, 1.745
	41°C	

B 'Precision' refers to how close the measurements are to one another. B has the closest measurements.

Manipulation of gene pools through selective	Question 34	Α	Selective breeding is the
breeding programs	Crossbreeding plants is an example of		deliberate and controlled
	A. selective breeding.		reproduction of organisms
	B. genetically modified organisms.		to produce desired traits.
	C. ethical maleficence.		
	D. natural selection.		
The genetic code as a universal triplet code	Question 35	A	The definition of
that is degenerate and	The genetic code is described as degenerate, meaning that		degenerate means that
the steps in gene expression, including	A. more than one codon codes for an amino acid.		more than one codon of the
transcription, RNA processing in eukaryotic cells and translation by ribosomes	B. it is the same in every organism.		genetic code (a
	C. it requires an mRNA copy of DNA to be made before		combination of three
	translation can occur.		nucleotides) codes for an
	D. the genetic code is only made up of four bases.		amino acid.
Evidence of speciation	Outsting 20		Cumpatuis especiation is
as a consequence of isolation and genetic divergence, including Galapagos finches as an example of allopatric speciation and Howea palms on Lord Howe Island as an	Question 36	С	Sympatric speciation is
	Which is the correct definition and example of the type of speciation provided?		when populations evolve into different species
	 Galapagos finches are an example of sympatric speciation; they developed into a new species without a geographic barrier 		without a geographic barrier in place, like Howea palms.
example of sympatric speciation	 B. Galapagos finches are an example of allopatric speciation; they developed into a new species without a geographic barrier 		
	C. Howea palms are an example of sympatric speciation; they developed into a new species without a geographic		

barrier
 D. Howea palms are an example of allopatric speciation; they developed into a new species without a geographic barrier

Use the following information to answer Questions 37 and 38. The below image shows a diagrammatic representation of the *trp* operon.

The structure of genes: exons, introns and promoter and operator regionsQuestion 37CRegulatory genes code for proteins that control the expression of structural genes.A. are shown in the B region of the diagram.CRegulatory genes code for proteins that control the expression of structural genes.B. create proteins that assist in cell structure or proteins that perform roles around the body.CRegulatory genes code for proteins that control the expression of structural genes.
promoter and operator regionsRegulatory genesproteins that control the expression of structural genes.A. are shown in the B region of the diagram.expression of structural genes.B. create proteins that assist in cell structure or proteins thatgenes.
 A. are shown in the B region of the diagram. <i>Expression of structural</i> B. create proteins that assist in cell structure or proteins that <i>genes</i>.
perform roles around the body.
C. can code for proteins that stop gene expression.
D. only control the expression of a single structural gene.

The basic elements of gene regulation:	Question 38	D	When cellular tryptophan
prokaryotic trp operon	Which statement about the <i>trp</i> operon is correct?		levels are low, the genes
as a simplified example of a regulatory process	A. structural genes will only be expressed when there is high		will be freely expressed (no
, , ,	cellular tryptophan levels		repression) and the mRNA
The structure of genes: exons, introns and	B. tryptophan molecules bind to RNA polymerase to change		molecule will not be
promoter and operator	its shape and prevent transcription		truncated/shortened (no
regions	C. when there are high cellular levels of tryptophan, an		attenuation). A is incorrect
	antiterminator hairpin will form in mRNA		as genes are expressed
	D. a longer mRNA molecule will be produced when low levels		when there are low
	of tryptophan are in the cell		tryptophan levels. B is
	// /		incorrect as tryptophan
			binds to the repressor
			protein. C is incorrect as
			a termination hairpin will
			form in mRNA when there
			are high levels of
			tryptophan in the cell.
	Use the following information to answer Questions 39 and 40.		
	The table below and phylogenetic tree provided in Question 40		
	show the results of sequencing a 9-base pair region of the		
	genomes of four species of fruit bat and comparing it to an		

ancestral sequence.

Origin	Sequence
Ancestral sequence	GCGATCTGC
Species A	GCCATCTGC
Species B	GCAATGTCC
Species C	GCTATGTCC
Species D	TCGATCTAC

What type of mutations occurred between the ancestral

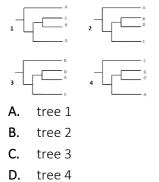
sequence and the sequence in Species C?

Causes of changing allele frequencies in a population's gene pool, including environmental selection pressures, genetic drift and gene flow; and mutations as the source of new alleles

B. point mutation

Question 39

Α.


- **C.** block mutation
- D. somatic mutation

frameshift mutation

The use and interpretation of phylogenetic trees as evidence for the relatedness between species

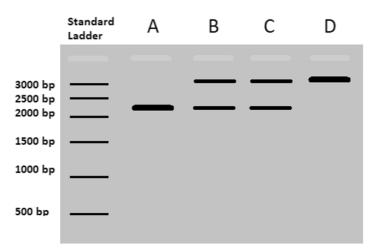
Question 40

Which phylogenetic tree correctly represents the data from the table?

B Point mutations change a single nucleotide to a different nucleotide.

 A Species A has one nucleotide change compared to the ancestral sequence, species D has two changes, and species B and C have three.

Section B


VCAA Key Knowledge Question

Answer guide

Scientists in Melbourne have been experimenting using CRISPR in mice to inactivate a mutated version of the GG1 gene that they believe may be disease-causing in humans and mammals. In mice, the GG1 gene is 2380 base pairs (bp) long. The mutated variation known as GG1-B is 2930 bp long.

Scientists screened baby mice for the GG1-B variant using polymerase chain reaction (PCR) to target and amplify the gene.

The results for four different mice (A, B, C, D) were run on gel electrophoresis alongside a standard ladder – these results are included in the image below.

Amplification of	Question 1a (3 marks)	Answer:
DNA using polymerase chain	Which of the four mice	 The mouse that is homozygous for the GG1-B variant is mouse D.
reaction and the	is homozygous for the	 This means that it has two copies of the GG1-B allele, which is 2930 bp
use of gel electrophoresis in	GG1-B variant? Justify	long.
sorting DNA	your answer.	• Mouse D has a thick band close to 3000 bp (corresponding to the GG1-B
fragments,		allele) according to the standard ladder and no other bands present on
including the interpretation of		the gel.
gel runs for DNA		
profiling		Marking protocol:
		One mark for each of the above points.

Amplification of	Question 1b (3 marks)	Answer:
DNA using polymerase chain	Outline the steps of a	ullet Denaturation – DNA is heated to 90-95°C to break the hydrogen bonds
reaction and the	single cycle of	that hold two strands together.
use of gel electrophoresis in	polymerase chain	 Annealing – Primers bind to the single stranded DNA; this occurs at 50-
sorting DNA	reaction (PCR).	55℃.
fragments,		 Elongation – Taq polymerase binds to the primers and synthesises a
including the interpretation of		new complementary strand of DNA; this occurs at 72°C.
gel runs for DNA		
profiling		Marking protocol:
		One mark for each of the above points.

The use of	Question 1c (2 marks)	Answer:
enzymes to	Name the component	• The component that acts as an endonuclease is Cas9.
manipulate DNA, including	that acts as the	
polymerase to		• Cas9 does not work like a typical restriction enzyme, as restriction
synthesise DNA,	endonuclease during	enzymes recognise a set sequence (at the recognition site), whereas
ligase to join DNA	CRISPR-Cas9 and	Cas9 cuts at a sequence that is designated by guide RNA.
and endonucleases to	explain why it does not	
cut DNA	work like a typical	Marking protocol:
	restriction enzyme.	One mark for each of the above points.
The function of CRISPR-Cas9 in bacteria and the application of this function in		
editing an organism's		
genome		
The function of	Question 1d (2 marks)	Answer:
CRISPR-Cas9 in bacteria and the	Scientists are exploring	• CRISPR-Cas9 could have unforeseen off-target effects in the individual
application of this	the potential of using	being treated (non-maleficence).
function in	CRISPR-Cas9 for gene	• Genetically modified embryos may experience unforeseen negative
editing an organism's	editing in humans.	consequences during a pregnancy (non-maleficence).
genome	-	• Embryos cannot give informed consent (respect).
	Describe two potential	• Some people believe experimenting on embryos does not respect the
	ethical issues with	sanctity of life (respect).
	using CRISPR-Cas9 to	 Gene-editing technology is expensive and, thus, may only be available as
	eliminate genetic	a medical tool to wealthy people (justice).
	diseases.	 CRISPR-Cas9 could be used to target traits that are not life-threatening
		but are considered 'genetically inferior,' perpetuating prejudice
		(respect).
		Marking protocol:
		One mark for any of the above points, to a maximum of two. Any other
		reasonable response should be awarded marks.
		If students have written more than two points, mark only the first two
		points that are listed.
		איז
The function of	Question 1c (2 model)	
CRISPR-Cas9 in	Question 1e (2 marks)	Answer:
hactoria and the	Using CRISPR to correct	• Making changes to the genome in embryos means that those changes

CRISPR-Cas9 in bacteria and the application of this function in editing an organism's genome	Using CRISPR to correct the genetic basis of inherited genetic diseases is mainly suggested for embryos.	 Answer: Making changes to the genome in embryos means that those changes will carry through to all cells of the body as the embryo grows and as cells replicate and differentiate. On the other hand, making changes to the genes of an adult will only affect the cells that are directly edited.
	Explain why this process would be most effective in embryos as compared to adults.	Marking protocol: One mark for each of the above points.

The general structure of the biochemical pathways in	Question 2a (1 mark) State the total ATP yield produced by one	Answer: • 30/32 ATP.
photosynthesis and cellular respiration from initial reactant to final product	molecule of glucose in aerobic cellular respiration.	Marking protocol: One mark for the above point.
The main inputs, outputs and locations of glycolysis, Krebs Cycle and		
electron transport chain including ATP yield (details of biochemical		
pathway mechanisms are not required)		

The main inputs, outputs and locations of glycolysis, Krebs Cycle and electron transport chain including ATP yield (details of biochemical pathway mechanisms are not required)

not required)

Name the regions 'A' and 'B' that are indicated in the below diagram and name the cellular respiration process that occurs at each part.

E MANEN MAR

Question 2b (2 marks)

Answer:

- 'A' is the matrix of the mitochondria; the Krebs cycle occurs here.
- 'B' is the mitochondrial cristae (the inner membrane); the electron transport chain occurs here.

Marking protocol:

One mark for each of the above points.

	Adapted From: https://commons.wikimedia.org/wiki/File:Mitochondrion_IPG
The main inputs,	Question 2c (2 marks)
outputs and locations of	Name the molecule
glycolysis, Krebs	that glucose is broken
Cycle and	down into during
electron transport chain	glycolysis, and name
including ATP	the further derived
yield (details of	molecule that is an
biochemical pathway	input of the Krebs
mechanisms are	cycle.

Answer:

- Glucose is broken down into (2x) pyruvate molecules.
- (2x) Acetyl-CoA molecules, which are derived from the 2x pyruvate molecules, are an input of the Krebs cycle.

Marking protocol:

One mark for each of the above points.

Vaccination for COVID-19 is one of the main forms of combatting the disease and controlling spread. COVID-19 vaccines either introduce or have the body create a fragment of the disease to which the immune system responds, building immunity for future infections.

The role of the lymphatic system in the immune response as a transport network and the	Question 3a (1 mark) How does the lymphatic system streamline the	 Answer: The lymphatic system will move antigen-presenting cells from sites of infection/entry to the lymph nodes for recognition by lymphocytes (by both B and T cells).
network and the role of lymph nodes as sites for antigen recognition by T and B lymphocytes	recognition of the viral antigen?	Marking protocol: One mark for the above point.

The		
characteristics	Question 3b (4 marks)	Answer:
and roles of the	Outline the steps that	• Antigen presenting cells (APCs) encounter and engulf viral fragments,
components of	occur in the cell-	displaying viral antigens on MHC-II proteins.
the adaptive immune response	mediated immune	• Naïve T cells with complementary/matching antigen receptors recognise
against both	response that leads the	the antigens that are displayed by the APCs.
extracellular and	body to produce	• Helper T cells with complementary receptors also recognise the viral
intracellular threats, including	cytotoxic T cells when it	antigens and release cytokines, causing naïve T cells to undergo clonal
the actions of B	encounters a viral	selection.
lymphocytes and	antigen.	 Naïve T cells then undergo clonal selection (expansion and
their antibodies, helper T and		differentiation), differentiating into cytotoxic T cells.
cytotoxic T cells		
		Marking protocol:
		One mark for each of the above points.
Vaccination	Question 3c (1 mark)	Answer:
programs and their role in	Describe why having a	 Herd immunity means that those who have compromised immune
maintaining herd	majority of people	systems and cannot be vaccinated are protected.
immunity for a	being vaccinated and	 Herd immunity means that the spread of the virus is limited, reducing
specific disease in a human	gaining herd immunity	the change of mutations that can lead to an increase in the chance of
population	is important in	breakthrough infections and new strains.

Marking protocol:

combatting and controlling disease.

One mark for either of the above points.

Scientific and social strategies employed to identify and control the spread of pathogens, including identification of the pathogen and host, modes of transmission and measures to control transmission	Question 3d (3 marks) List three measures, other than vaccination and herd immunity, that may be used to control and/or screen disease transmission.	 Answer: Handwashing. Using sanitisers/antiseptics/disinfectants. Lockdowns to prevent movement. Quarantine to prevent transmission. Screening a population with routine testing. Screening medication sales to see trends in symptoms among populations. Identifying the pathogen and method of spread. Mask-wearing and social distancing (if the disease spread is airborne). Targeting and treating the cause of disease with medicine.
		Marking protocol: One mark for any of the above points, to a maximum of three.
Consequences of bacterial resistance and viral antigenic drift and shift in terms of ongoing challenges for treatment strategies and vaccination against	Question 3e (2 marks) Describe antigenic drift and outline how it can impact the effectiveness of a vaccine.	 Answer: Antigenic drift refers to small mutations in the genes coding for viral surface antigens. It can reduce the effectiveness of a vaccine as the immune system will be primed to respond to the old surface antigen and, therefore, the immune system may not recognise mutated viral antigens, or it may have a slower response to them.
pathogens		Marking protocol:
		One mark for each of the above points.

The basis of the 'Out of Africa' model is that *Homo sapiens* evolved first in Africa and then spread around the world between 100,000 and 200,000 years ago, superseding all other hominin species.

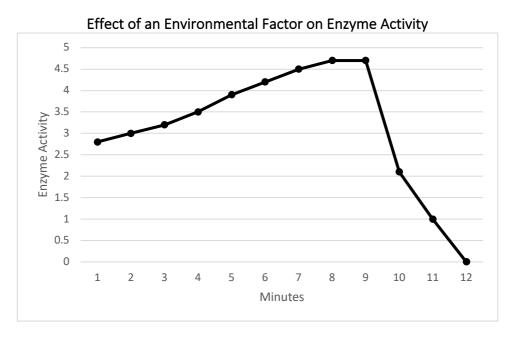
Modern humans had reached Asia approximately 70,000 years ago before moving down through South-east Asia and into Australia approximately 50,000 years ago. *Homo sapiens*, however, were not the first hominins to inhabit this region; *Homo erectus* had already been in Asia for at least 1.5 million years.

The remains of an Indigenous man, dubbed 'Mungo Man,' was discovered in a lake from the World Heritage-listed Willandra Lakes region in far-western New South Wales. The remains have been dated to be over 40,000 years old.

Changes in	Question 4ai (1 mark)	Answer:	
species over geological time	Radiocarbon dating can	• 5730 years.	
as evidenced	be used for organic		
from the fossil	samples up to 60,000	Marking protocol:	
record: faunal (fossil)	years old.	One mark for the above point.	
succession, index and transitional fossils, relative and absolute dating of fossils	What is the half-life of carbon-14?		

Changes in	Question Apii /1 manle)	Answer
species over	Question 4aii (1 mark)	Answer:
geological time	Radiocarbon dating	• Absolute dating.
as evidenced from the fossil	determines numerical	
record: faunal	age for fossils and	Marking protocol:
(fossil)	other materials. Can	One mark for the above point.
succession, index	this be considered	
and transitional fossils, relative	absolute or relative	
and absolute	dating?	
dating of fossils		
Evaluate investigation	Question 4b (2 marks)	Answer:
methods and	Researchers attempted	● It was a personal error.
possible sources	to extract	 Personal errors include mistakes or miscalculations – errors on the part
of personal	mitochondrial DNA	of the person or people who was/were conducting the research.
errors/mistakes or bias, and	(mtDNA) from Mungo	
suggest	Man and sequence it;	Marking protocol:
improvements to	however, further	One mark for each of the above points.
increase accuracy and precision,	research has	Note: In VCE Biology <i>Advice for teachers</i> , three types of error are noted:
and to reduce the	discovered that the	personal, systematic and random. Human error is not one of these and is
likelihood of	sample had been	not an accepted answer here.
errors	contaminated with	
	modern human DNA,	
	likely from people	
	handling the bones.	
	What kind of scientific	
	error is this? Justify	
	your answer.	
	your answer.	
Ways of using	Question 4c (2 marks)	Answer:
fossil and DNA	Why is mitochondrial	 mtDNA has a higher mutation rate than nuclear DNA, providing enough
evidence (mtDNA	DNA (mtDNA)	accumulated differences for clear evolutionary comparisons.
and whole genomes) to		
explain the	especially useful for	• There is no recombination in mtDNA because it is only inherited from
migration of	determining	the mother (meaning that, except for mutations, mtDNA does not
modern human populations	evolutionary	change between generations).
around the world,	relationships?	
including the		Marking protocol:
migration of		One mark for each of the above points.
Aboriginal and Torres Strait		
Islander		
populations and		
their connection to Country and		
Place		

Ways of using fossil and DNA evidence (mtDNA and whole genomes) to explain the migration of modern human populations around the world, including the migration of Aboriginal and Torres Strait Islander populations and their connection to Country and Place	Question 4d (2 marks) Does the discovery and dating of the Lake Mungo remains directly impact or contradict the 'Out of Africa'	 Answer: No, it does not contradict it. The remains of Mungo Man are estimated to be over 40,000 years old and ancient humans were said to have migrated to Australia around 50,000 years ago.
	hypothesis? Justify your answer.	Marking protocol: One mark for each of the above points.


Biochemical processes such as photosynthesis require enzymes and coenzymes to facilitate and speed up reactions.

The general role of enzymes and coenzymes in facilitating steps in photosynthesis and cellular respiration	Question 5a (3 marks) Write the unloaded form of ATP and describe its role in the light-dependent and light-independent stages of	 Answer: ADP (+ Pi) In the light-dependent stage: ADP + Pi form ATP, storing energy from sunlight in a high-energy phosphate bond. In the light-independent stage: The phosphate bond in ATP is broken to release energy (required to convert CO₂ and H+ into glucose) and ADP + Pi form again.
	photosynthesis.	Marking protocol: One mark for each of the above points.

Rubisco is an enzyme in photosynthesis that fixates carbon. If it binds to the wrong substrate, Rubisco undergoes a process called photorespiration.

The role of Rubisco in photosynthesis, including adaptations of C ₃ , C ₄ and CAM plants to	Question 5b (2 marks) Name the alternate substrate that Rubisco may bind to and outline the effect that	 Answer: Rubisco uses oxygen as an alternative substrate in photorespiration. This disrupts photosynthesis, reducing glucose output and wasting energy.
maximise the efficiency of photosynthesis	this has on photosynthesis.	Marking protocol: One mark for each of the above points.

The two key factors that determine whether Rubisco undergoes carbon fixation or photorespiration are temperature and substrate concentration. A team was studying the impact of these different environmental factors on Rubisco enzyme activity. The results from one of their experiments is shown below.

The factors that	Question 5c (3 marks)	Answer:
affect the rate of photosynthesis:	Referring to the graph,	 The temperature was increased rapidly/significantly.
light availability,	what change was made	 High temperatures will rapidly denature enzymes and reduce/stop
water availability,	at nine minutes? Justify	enzyme activity. (Changes in pH or cooling the temperature, meanwhile,
temperature and carbon dioxide	your answer,	will not produce the steep dip that is shown).
concentration	referencing the data.	 This is reflected on the graph, which shows a sharp dip in enzyme
		activity after nine minutes.
		Marking protocol:
		One mark for each of the above points.
		NB: For the first dot point, 'a change in temperature' is <u>not</u> an acceptable
		answer – an <i>increase</i> in temperature must be specified.

When designing their experiments on factors that affect enzyme activity, the team were careful to only test one factor at a time.

Develop aims and questions, formulate hypotheses and make predictions Identify independent, dependent and	Question 5d (2 marks) Given this approach, if the substrate concentration was being changed between groups in the experiment, explain	 Answer: The temperature should remain unchanged (controlled variable). Only one variable should be changed between groups to increase the experiment's validity, ensuring that changes in the measured outcome (dependent variable) are only caused by changes in the independent variable.
controlled variables in controlled experiments	what should happen to the temperature and why.	Marking protocol: One mark for each of the above points.

Changing weather conditions, including rising temperatures and water unavailability, can increase photorespiration in plants. While 85-90% of plants undergo regular photosynthesis, some plants have adaptations to decrease photorespiration and maximise photosynthesis.

The role of	Question 5e (3 marks)	httes: = glotta/photorepartion -2 of can glotta/A/C of and can glotta agriculture; Somer Direct (https://www.sciencedirect.com/tapics/agricultural and biological sciences/C3 photopyrthesis (blaim from A.S. Rephoredire, in Englogedia of Applied Plant Sciences, 2003) Answer:
Rubisco in photosynthesis,	Describe the	ullet C4 and CAM plants fix carbon into a (organic carbon-based) molecule
including adaptations of C₃,	adaptations of C_4 and	before releasing it into the Calvin cycle.
C_4 and CAM plants to	CAM plants to maximise	 In C₄ plants, carbon fixation and the remainder of the Calvin cycle occur in separate cells (carbon fixation occurs in mesophyll cells and the rest
maximise the efficiency of	photosynthesis.	of the Calvin cycle occurs in bundle sheath cells). • In CAM plants, carbon fixation and the rest of the Calvin cycle occur at
photosynthesis		• In CAM plants, carbon fixation and the rest of the Calvin cycle occur at different times (carbon fixation occurs at night with the remainder of
		the Calvin cycle occurring during the day).
		Marking protocol:
		One mark for each of the above points.

Galapagos finches developed into different species after they dispersed across different islands, creating geographic isolation between the Finch populations.

Evidence of	Question 6a (4 marks)	
speciation as a consequence of	What type of	 Galapagos finches are an example of allopatric speciation.
isolation and	speciation is this?	 Allopatric speciation involves a geographical barrier preventing gene
genetic	Describe the process.	flow/interbreeding.
divergence, including		• Different selection pressures favouring different phenotypes act on the
Galapagos		separate populations.
finches as an example of		• Over time, changes accumulate, and the different populations become
allopatric		separate species.
speciation and		
Howea palms on Lord Howe Island		Marking protocol:
as an example of		One mark for each of the above points.
sympatric		
speciation		

Causes of	Question 6b (1 mark)	Answer:
changing allele frequencies in a	Small groups of finches	• Founder effect.
population's gene	from an island group	
pool, including environmental	would be able to cross	Marking protocol:
selection	large distances with the	One mark for the above point.
pressures, genetic drift and gene	right wind.	
flow; and mutations as the	Identify the term for	
source of new	when a population is	
alleles	seeded by a small	
	group of individuals	
	with different allele	
	frequencies to the	
	main population.	

Evidence of speciation as a consequence of isolation and genetic divergence, including Galapagos finches as an example of allopatric speciation and Howea palms on Lord Howe Island as an example of sympatric speciation	Question 6c (3 marks) Outline the steps of natural selection for the Galapagos finches.	 Answer: Individuals in the finch populations had genetic variation presenting in phenotypic differences. Finch populations on different islands also had different selection pressures. Individual finches that had advantageous phenotypes for their specific environmental selection pressures were more likely to survive and reproduce. The advantageous phenotype was passed onto offspring; over time, the frequency of the advantageous allele increased in the population of that island. Marking protocol: One mark for each of the above points.
Biological consequences of changing allele frequencies in terms of increased and decreased	Question 6d (2 marks) Over a long period of time, with little change in selection pressures, how is natural selection	 Answer: Natural selection is likely to reduce genetic diversity. With little change in selection pressures, only certain individuals with advantageous alleles may successfully reproduce, reducing the variety of alleles that are present in the population.
genetic diversity	likely to affect genetic diversity? Why is this the case?	Marking protocol: One mark for each of the above points.

The first European settlers in Australia brought with them infectious diseases that severely impacted the Aboriginal and Torres Strait Islander populations, resulting in mass infections and death.

"Smallpox spread across the country with the advance of European settlement, bringing with it shocking death rates. The disease affected entire generations of the First Nations populations and survivors were in many cases left without family or community leaders." (National Museum of Australia)

The emergence of	Question 7a (3 marks)	Answer:
new pathogens and re- emergence of known pathogens in a globally connected world, including the impact of European arrival on Aboriginal and Torres Strait Islander peoples	Give three reasons why smallpox and other European diseases would have had such a severe impact on the First Nations populations.	 The First Nations people would not have had natural active immunity to the diseases. Changing and forced living conditions led to a lack of access to clean water. The overall impact of colonisation on health and wellbeing would have made the populations more vulnerable to disease. Their medicine was not developed to deal with European diseases. At the time, the high population densities of First Nations peoples (in forced camps) allowed the rapid spread of the diseases.
		Marking protocol: One mark for any of the above points, to a maximum of three.

The innate immune response including the steps in an inflammatory	Question 7b (1 mark) One of the main symptoms of smallpox is a fever. What is the	 Answer: A fever raises the body temperature to an abnormally high temperature to kill pathogens in the body.
response and the characteristics and roles of macrophages, neutrophils, dendritic cells, eosinophils, natural killer cells, mast cells, complement proteins and interferons	purpose of a fever in the body?	Marking protocol: One mark for the above point.

Biofuels that are made from biomass are considered to be a potentially greener alternative to fossil fuels.

Uses and	Question 8a (2 marks)	Answer:
applications of anaerobic	Give two reasons why	 Biofuels are renewable, whereas fossil fuels are not renewable.
fermentation of	biofuels are considered	• Biofuels are (theoretically) carbon-neutral, whereas fossil fuels are not
biomass for biofuel	more environmentally	carbon-neutral.
production	friendly than fossil	 Biofuels recycle waste from industries such as crops, farming and
	fuels.	forestry; fossil fuels are derived from raw materials.
		Marking protocol:
		One mark for any of the above points, to a maximum of two.

The factors that affect the rate of cellular respiration: temperature, glucose availability and oxygen concentration	Question 8b (2 marks) What are two of the required environmental factors to induce anaerobic respiration?	 Answer: A lack of oxygen. The presence of glucose substrate. A temperature within the enzymes' operating ranges. A pH within the enzymes' operating ranges. The presence of an organism that performs anaerobic respiration, such as yeast.
		Marking protocol:

Marking protocol:

One mark for any of the above points, to a maximum of two.

Uses and	Question 8c (2 marks)	Answer:
applications of anaerobic	List the biofuel that can	• Bioethanol.
fermentation of	be made by anaerobic	
biomass for biofuel	fermentation and one	 Bioethanol can be used as a fuel for travel.
production	application of this fuel.	 Bioethanol can be used for power generation.
		 Bioethanol can be used for heating.
		Marking protocol:
		One mark for identifying bioethanol, and one mark for an application of
		this fuel.
		Any other reasonable application for bioethanol should be accepted.

The location,	Question 8d (2 marks)	Answer:
inputs and the	List the outputs of	• $Plants/yeast: 2 ethanol + 2 CO_2 + 2 ATP.$
difference in	anaerobic respiration	
outputs of anaerobic		• Animals: 2 lactic acid + 2 ATP.
fermentation in	for plants/yeast as	
animals and	opposed to animals.	Marking protocol:
yeasts		One mark for each of the above points.
T U		
The genetic code as a universal	Question 9a (3 marks)	Answer:
triplet code that	Outline the steps in the	• DNA is unwound/unzipped.
is degenerate and	process of	 RNA polymerase attaches to the DNA template strand and reads it,
the steps in gene	transcription.	building a strand of complementary RNA nucleotides.
expression, including		 A strand of pre-mRNA is formed as the final product.
transcription,		
RNA processing in		Marking protocol:
eukaryotic cells and translation		One mark for each of the above points.
by ribosomes		
The genetic code	Question 9b (2 marks)	Answer:
as a universal	Describe how a single	 A single gene is comprised of exons and introns.
triplet code that is degenerate and	gene can produce	• During mRNA processing, different combinations of exons can be spliced
the steps in gene	multiple different	together to create different mRNA strands from the one gene.
expression,	mRNA strands.	together to create afferent minior strands from the one gene.
including transcription,		Marking protocol:
RNA processing in		Marking protocol:
eukaryotic cells		One mark for each of the above points.
and translation		
by ribosomes		

Humans have two sets of chromosomes (i.e., humans are diploid). It is common for plants to have more than two sets of chromosomes; this can be advantageous, especially to crop plants, due to increased heterozygosity and as this can protect against the effects of deleterious mutations. It also, however, often results in reduced fertility due to meiotic errors, allowing for the production of seedless varieties.

Causes of	Question 10a (1 mark)	Answer:
changing allele frequencies in a	Common in plants,	• Polyploidy.
population's gene	what is the term for	
pool, including	having multiple sets of	Marking protocol:
environmental selection	chromosomes?	One mark for the above point.
pressures, genetic		
drift and gene		
flow; and		
mutations as the		
source of new		
alleles		

2 (
Causes of changing allele	Question 10b (1 mark)	Answer:							
frequencies in a	What term is used to	• Aneuploidy.							
population's gene	describe having one or								
pool, including environmental	more chromosomes	Marking protocol:							
selection	missing from a set of	One mark for the above point.							
pressures, genetic	chromosomes, or								
drift and gene	having one or more								
flow; and mutations as the	additional								
source of new	chromosomes?								
alleles									
The use of	Question 10c (2 marks)	Answer							
genetically	. ,	Answer:							
modified and	Plants with high yields	Concerns							
transgenic organisms in	or desirable traits, such	• GMO crops may lead to a loss of genetic diversity.							
agriculture to increase crop productivity and to provide resistance to	as seedless fruit, have	• There may be unforeseen impacts from potential crosspollination or							
	been developed using	weeds/pests developing resistance.							
	genetic modification	 GMOs are unnatural/like 'playing God.' 							
	(GMO), but some	 People worry about whether GMOs are possibly unsafe to consume. 							
disease	consumers and farmers	 There is an initial impact on farmers (cost of new seeds, difficult 							
	have rejected GMO	regulations).							
	products and crops.								
		Benefit							
	Outline one concern and one benefit	 GMO crops are more productive (improving food security and profits for farmers). 							
	regarding GMO crops.	 GMO crops can be made to be more drought/disease tolerant. 							
		 GMO crops can be made to be insect-resistant, requiring less 							
		pesticide/management.							
		• GMO foods can have improved nutritional benefits or taste (improving							
		public health and making them more appealing to consumers).							
		Marking protocol:							
		One mark for a one 'concern' and one mark for one 'benefit' point, to a maximum of two.							

VCE BIOLOGY Written Examination ANSWER SHEET – 2022

Student name:

Use a **PENCIL** for **ALL** entries. For each question, shade the box which indicates your answer.

Marks will **NOT** be deducted for incorrect answers.

NO MARK will be given if more than ONE answer is completed for any question.

If you make a mistake, **ERASE** the incorrect answer – **DO NOT** cross it out.

1	Α	В	С	D	15	Α	В	С	D	29	Α	В	С	D
2	А	В	С	D	16	А	В	С	D	30	А	В	С	D
3	Α	В	С	D	17	Α	В	С	D	31	Α	В	С	D
4	А	В	С	D	18	А	В	С	D	32	А	В	С	D
5	Α	В	С	D	19	Α	В	С	D	33	Α	В	С	D
6	А	В	С	D	20	А	В	С	D	34	А	В	С	D
7	А	В	С	D	21	Α	В	С	D	35	А	В	С	D
8	А	В	С	D	22	Α	В	С	D	36	А	В	С	D
9	Α	В	С	D	23	Α	В	С	D	37	Α	В	С	D
10	А	В	С	D	24	Α	В	С	D	38	Α	В	С	D
11	Α	В	С	D	25	Α	В	С	D	39	Α	В	С	D
12	А	В	С	D	26	Α	В	С	D	40	А	В	С	D
13	Α	В	С	D	27	Α	В	С	D					
14	Α	В	С	D	28	Α	В	С	D					