CHEMISTRY

Unit 3 – Written examination 1

2007 Trial Examination

SOLUTIONS

SECTION A: Multiple-choice questions (1 mark each)

Question 1

Answer: D

Explanation:

The polymer is polystyrene. This is an addition polymer. The monomers can join in random orientations.

Question 2

Answer: A

Explanation:

The polymer is an ester formed from a dialcohol with two CH_2 groups and a diacid with one CH_2 in the middle.

Question 3

Answer: C

Explanation:

This is polyethene. The molar mass is a multiple of ethene as addition polymers give off no small molecules.

Question 4

Answer: B

Explanation:

Heptanoic acid has 14 H's = CH₃CH₂CH₂CH₂CH₂CH₂COOH

Question 5

Answer: A

Explanation:

methylbutanoate has the same formula

Question 6

Answer: B

Explanation:

$$n(I) = c \times V = 0.1 \times 0.0282 = 0.00282 \text{ mol}$$
 $c = \frac{n}{V} = \frac{0.00282}{0.025} = 0.113 \text{ M}$

Question 7

Answer: B

Explanation:

mass = $n \times M = 0.00282 \times 176 = 0.496$ g; % = $\frac{0.496}{2} \times 100 = 24.8$ %

Question 8

Answer: C

Explanation:

The burette and pipette should be rinsed with the solution to go in them. The flask should be rinsed with water.

Question 9

Answer: C

Explanation:

$$K_{a} = 6.2 \times 10^{-10} = \frac{\left[H^{+}\right]^{2}}{0.01} \Longrightarrow \left[H^{+}\right]^{2} = 6.2 \times 10^{-12} \Longrightarrow \left[H^{+}\right] = 2.46 \times 10^{-6} \Longrightarrow \text{ pH} = 5.6$$

Question 10

Answer: A

Explanation:

0.6 mole of NOCl used \Rightarrow 0.6 mole NO formed and 0.3 mole Cl. 1.0 mol NOCl Total = 1.9 mol

Question 11

Answer: B

Explanation:

As temp goes up from 0 to 25 C, the value of K increases. Therefore the reaction is endothermic.

Question 12

Answer: B

Explanation:

 H^+ takes OH^- out of the equilibrium. The system moves to the right to replace this. Therefore the concentration of HOCl increases.

Question 13

Answer: D

Explanation:

 $H = +1, O = -2 \times 4 = -8 \Longrightarrow Cl = +7$

Question 14

Answer: B

Explanation:

Catalysts lower the activation energy of a reaction., by providing an easier pathway for the reaction.

Question 15

Answer: C

Explanation:

Radiation from the lamp is absorbed by electrons in the sample jumping to outer shells.

Question 16

Answer: A

Explanation:

As a metal reacts with acid, hydrogen is released lowering the mass of the flask.

Question 17

Answer: D

Explanation:

The molecules with higher boiling points will generally be slower moving through a column.

Question 18

Answer: C

Explanation:

16 g of sulfur is $\frac{1}{2}$ a mole \Rightarrow 20 g of metal is also $\frac{1}{2}$ a mole \Rightarrow 1 mole = 40 g = calcium

Question 19

Answer: B

Explanation:

67.2 dm³ of HCl at STP is 3 mole. Concentration will be $\frac{3}{30} = 0.1 \text{ M} \implies \text{pH} = 1$

Question 20

Answer: C

Explanation:

CH₃CH₂COOH % = $\frac{32}{74} \times 100 = 43.2$ %

SECTION B: Short-answer questions

An asterisk * indicates 1 mark to be awarded

Question 1

a.
$$K = \frac{[NO]^2 [Br_2] *}{[NOBR]^2} = \frac{(2.05 \times 10^{-2})^2 \times 5.14 \times 10^{-2}}{(5.85 \times 10^{-2})^2} = 0.00643 *$$

This is < K, therefore the system needs to move in the forward direction^{*} to increase K.

- b.
- i. Darker = more $Br_2 \Rightarrow$ system went forward^{*} increase in K with increasing

temperature \Rightarrow reaction is endothermic^{*}

2 marks

3 marks

- ii. volume halved = double pressure ⇒ system tries to make less molecules ⇒ back reaction favoured ⇒ NOCl increases*
 1 mark
- iii. P $\frac{1}{2} \Rightarrow$ system moves to make more molecules \Rightarrow goes to the right making more NO^{*}. 1 mark Total 7 marks

Question 2

a. The units do not matter* because a ratio is being calculated (as long as you make both measurements in the same unit) *

2 marks

b. It will not be the same as the R_f value is different for both spots^{*}.

- 1 mark
- **c.** We have no way of knowing because a different solvent is used. Further testing would be required*.

1 mark

d. Yellow is probably less polar as it does not move as far in a polar solvent as red*.

1 mark Total 5 marks

© The Specialised School For Mathematics Pty. Ltd. 2007 (TSSM)

Ouestion 3

c.

d.

a.	AgNO ₃ (aq)	+	NaNO ₃ (aq)	\rightarrow	AgCl(s)	+	NaNO ₃ (aq)*		
----	------------------------	---	------------------------	---------------	---------	---	-------------------------	--	--

b. The volume of silver nitrate must be in excess. The exact volume does not matter.*

- Filter paper wet \Rightarrow mass of precipitate is high*. Concentration of NaCl will come out high*. i. 2 marks
- ii. Mass of precipitate will be low \Rightarrow concentration of the NaCl will come out low.*
- i. If the reaction is reversible, then the AgCl is not completely insoluble. If some dissolves, accuracy of the answer is lost*. It is also a reminder to rinse the flasks with as little water as
- ii. The reaction is endothermic. Therefore, as T increases, K increases. This means more precipitate dissolves and the result is less accurate*.

1 mark Total 8 marks

Question 4

possible*.

a.

i. $n(CaF_2) = \frac{4.1}{78} = 0.0526 \text{ mol}$ $C(CaF_2) = \frac{n}{V} = \frac{0.0526}{4} = 0.0131 \text{ M}$

Concentration	Ca ²⁺ ions	F⁻ ions	CaF ₂
М	0.0131*	0.0262*	0.0131*
g L ⁻¹	0.524*	0.498*	1.025*

ii. $c(F^{-}) = 0.0262 \text{ M} \implies 1 \text{ litre is } 0.0262 \text{ mol}^{*}$. number of ions = $0.0262 \times 6.023 \times 10^{-23} = 1.58 \times 10^{-24} *$

b. atomic emission spectrometer or atomic absorption spectrometer.

1 mark Total 9 marks

1 mark

1 mark

1 mark

2 marks

6 marks

2 marks

Question 5

a.

i. 💌 *

1 mark

1 mark

ii. solvent, alcohol, fuel *

b.

- i. substitution*
- ii. addition*
- iii. substitution*
- iv. oxidation*

4 marks

c. i.	$CH_3CH_2OH(l) + H_2O(l) \rightarrow CH_3COOH(l) + 4H^+(aq) + 4e^*$	1 mark
ii.	$Cr_2O_7^{2-}(aq) + 14H^+(aq) + 6e \rightarrow 2 Cr^{3+}(aq) + 7H_2O(1)^*$	1 mark

d. ethyl ethanoate *

1 mark Total 9 marks

Question 6

a. Elemental Sulphur, often in the form of S_8 .*

$$SO_3$$
, $H_2S_2O_7$ or H_2SO_4 will be + 6*

b. Sulphur dioxide is a waste product from mining ores like ZnS and hence is readily available. * 1 mark

c.
i.
$$Ca(s) + H_2SO_4(aq) \rightarrow CaSO_4(aq) + H_2(g)^*$$

ii. $Ca(s) \rightarrow Ca^{2+}(aq) + 2e^*$

d.

i. $H_2SO_4(1) + H_2O(1) \rightarrow HSO_4(aq) + H_3O^+(aq)^*$ $HSO_4(aq) + H_2O(1) \rightleftharpoons SO_4^{2-}(aq) + H_3O^+(aq)$

ii. $K_a = \frac{\left[H_3 O^+\right] \left[SO_4^{2^-}\right]}{\left[HSO_4^-\right]} *$

1 mark

1 mark

1 mark

1 mark

1 mark

iii. The pH is difficult because the first step of the ionisation goes to completion, but the second step is only around 10%. Therefore it is difficult to calculate the concentration of H_3O^+ . The pH will also be temperature dependent.*

1 mark Total 9 marks