CHEMISTRY

Unit 4 – Written examination 2

SOLUTIONS

SECTION A	Multiple-choice	questions (1	mark each)
-----------	-----------------	--------------	------------

Question 1

Answer: B

Explanation:

Solar cells are not very efficient. Their cost is quite moderate.

Question 2

Answer: A

Explanation:

S(l) reacts with Na(l). The sulfur reaction is reduction; reduction at the cathode and the cathode is positive in a galvanic cell.

Question 3

Answer: C

Explanation:

$$3S(1) + 2e \rightarrow S_3^{2-}$$

 $2Na \rightarrow 2Na^+(1) + 2e$

Putting these two half equations together leads to answer C.

Question 4				
Answer: B				
Explanation:				
360g is 2 mole of glucose \Rightarrow the energy released will be 2803 x 2 = 5606 kJ				
Question 5				
Answer: A				
Explanation:				
Oxidation is a loss of electrons. It always occurs at the anode. Therefore the electrons always flow from the anode.				
Question 6				
Answer: D				
Explanation:				
This is the only solution with alkali mentioned, the OH ⁻ . This half equation can be combined with the oxygen half equation at 0.4 V to give the overall equation for methane forming carbon dioxide and water.				
Question 7				
Answer: A				
Explanation:				
$Z(s)$ and $X^{+}(aq)$ are favourable to react in a galvanic cell. No power supply is required.				
Question 8				
Answer: C				
Explanation:				
Bile acids are formed in the liver. They help break lipids to fatty acid molecules that are then transported around the body as emulsions.				

Question 9
Answer: B
Explanation:
They all have the formula $C_6H_{12}O_6$.
Question 10
Answer: D
Explanation:
The ammonium ions are gradually changed to NO ₂ ⁻ , then to NO ₃ ⁻ and then finally denitrified to N ₂
Question 11
Answer: A
Explanation:
In pH 2, there will be excess H ⁺ ions. Therefore the O ⁻ has a H ⁺ join to it.
Question 12
Answer: A
Explanation:
Glycerol, urea and glycine.
Question 13
Answer: B
Explanation:
The unsaturated fatty acid is $C_nH_{2n+1}COOH$. Therefore the monounsaturated version is $C_nH_{2n-1}COOH$, as it has two less hydrogens.

Question 14 Answer: A Explanation: Sodium, magnesium and sulfur are in the same period. Therefore, sodium is the largest, then magnesium, then sulfur. Oxygen will be less than sulfur as it has one less shell. **Question 15** Answer: B *Explanation:* Fluorine has the highest electronegativity of all. Nitrogen as a non metal comes next. Magnesium in Group II will be higher than lithium in Group I. **Question 16** Answer: C Explanation: Electrons have a negative charge, a very low mass and all elements have at least one electron. **Question 17** Answer: B Explanation: Period 4 includes the first transition series where a 3d subshell is being filled. **Question 18** Answer: D Explanation: It is a metal since its oxide forms a basic solution. Its charge is +2 if the formula is XO. Therefore it

is in Group II.

Question 19

Answer: C

Explanation:

To balance the equation, the subscript is 0 and the superscript is 1. This is a neutron.

Question 20

Answer: D

Explanation:

This is an example of nuclear fusion.

SECTION B: Short-answer questions

An asterisk * indicates 1 mark to be awarded

Question 1

a. electrolysis

1 mark

b. $K^+(1) + e \rightarrow K(1)^*$ (phases required)

1 mark

c. endothermic*

1 mark

d. molten solution*. Water will react instead if an aqueous solution is used*.

2 marks

- e.
- i. $4K(1) + O_2(g) \rightarrow 2K_2O(s)^*$

1 mark

ii. Basic, because it forms KOH in water*

1 mark

Total 7 marks

Question 2

a. monounsaturated *

1 mark

b.

i. ester*

1 mark

ii. circle the three instances of -O-C-*

1 mark

c.

i. Two.*

1 mark

ii. Carboxyl and hydroxyl.*

1 mark

iii. $C_{20}H_{38}O_2$ *

1 mark

iv. $2C_{20}H_{38}O_2 + 57O_2(g) \rightarrow 40CO_2(g) + 38H_2O(1) ** 1 mark for correct products/ 1 mark for correct balancing$

O

2 marks

d. $energy = 0.388 \times 39000 = 15132 \text{ joule*}$

$$E = 4.18 \times m \times \Delta T = 15132$$
$$\Delta T = \frac{15132}{(4.18 \times 200)} = 18.1^{\circ} C *$$

2 marks

Total 10 marks

Question 3

a. Vitamin C is a polar molecule and Vitamin E is non polar. Vitamin E is used in margarine and oily types of foods*

1 mark

b. Copper is a transition metal. It forms a metal complex with ammonia, but sodium does not. *

1 mark

c. One of - geosequestration of carbon dioxide, drying the coal out, fluidised bed of coal. *

1 mark

d. If the nucleus emits an electron, the atomic number will increase by one. *

1 mark

Total 4 marks

Question 4

a. to e.

The following table refers to the properties of the three elements fluorine, neon and sodium.

	Electron	Atomic	Electronegativity	First	Ion
Element	configuration	size		ionisation	configuration
				energy	
fluorine	$1s^22s^22p^5$	2	1	2	$1s^22s^22p^6$
neon	$1s^22s^22p^6$	3	3	1	$1s^22s^22p^6$
sodium	$1s^22s^22p^63s^{1*}$	1*	2 *	3 *	$1s^22s^22p^{6*}$

5 marks

f.

i. Emission spectrum for neon produces a characteristic spectrum.

1 mark

ii. The electrons are excited to an outer orbital where they reside for a transient period. Upon their return to the ground state the electrons emit light* which corresponds to exact energy values of a corresponding wavelength which is unique to the element*.

2 marks

Total 8 marks

Question 5

a.

i. *

1 mark

$$\begin{array}{c} H \\ | \\ | \\ HO - C - C - NH_2 \\ \parallel \quad | \\ O \quad CH - CH_3 \\ | \\ CH_3 \end{array}$$

ii. 131 *

1mark

iii. Hydrophobic*, as they have no polar bonds.

1 mark

b.

i. An enzyme acts as a catalyst*. It has a 3-D shape that matches the molecule reacting – lock and key model or induced fit model*.

2 marks

ii. When a protein is hydrolysed the peptide bonds are broken. The amino acids making up the protein are reformed*.

1 mark

iii. Papain is denatured during cooking of the meat. It loses its particular 3-D structure*.

1 mark

c.
$$NH_4^+$$
 -3 *

$$NO_3^- + 5 *$$

2 marks

Total 9 marks

Question 6

a.

i. Copper and lead will form. Water will react instead in the other cells.*

1 mark

ii. Oxygen.*

1 mark

iii. 72375 coulombs = $\frac{72375}{96500}$ mole of electrons = 0.75 mole*.

ratio of electrons to metal = $\frac{0.75}{0.25} = 3 \Rightarrow Al^{3+}$ *

2 marks

b.

i. Charge on a single electron = $\frac{96500}{6.023 \times 10^{-23}} = 1.6 \times 10^{-19} \text{ coulomb*}$

1 mark

ii. charge on metal $M^+ \Rightarrow 1:1$ ratio between electrons and metal $\Rightarrow 6$ mole metal

 $M_{\perp}^{2+} \Rightarrow 2.1$ ratio between electrons and metal $\Rightarrow 3$ mole metal

 $M^{3+} \Rightarrow 3:1$ ratio between electrons and metal $\Rightarrow 2$ mole metal

1 mark for knowledge of electron: metal ratio; 1 mark for 6, 3, 2

2 marks

c.

i. anode
$$C(s) + 2O^{2}(l) \rightarrow CO_{2}(g) + 4e *$$

1 mark

ii. cathode
$$Al^{3+}(1) + 3e \rightarrow Al(1) *$$

1 mark Total 9 marks

Question 7

a.

anode
$$2SOCl_2(aq) + 4e \rightarrow SO_2(g) + S(s) + 4Cl^*(aq)^*$$

cathode $4Li(s) \rightarrow 4Li^*(aq) + 4e *$

overall $4Li(s) + 2SOCl_2(aq) \rightarrow 4LiCl(aq) + SO_2(g) + S(s)$

2 marks

b. A gas being produced in a closed container would be very dangerous – the pressure would build up*.

1 mark

- **c.** The sulfur cell produces a voltage of 3.4 volts. It would take 3 AA batteries to pass this mark.*

 1 mark
- **d.** $Q = IT = 0.2 \times 55 \times 60 = 660 \text{ coulomb*}$

$$n(e) = \frac{660}{96500} = 0.00684 \, \text{mol}$$

$$n(Li) = 0.00684$$
 *

mass Li =
$$n \times M = 0.00684 \times 7 = 0.0478 \,\mathrm{g}^*$$

3 marks

e.
$$SO_2(g) + H_2O(l) \rightarrow H_2SO_3(aq) *$$

1 mark

f. Sulfur ion is larger*. It has more electrons in the outer shell, therefore the nucleus does not attract those electrons as strongly as sulfur atom.*

2 marks

Total 10 marks