

CHEMOLOGY EDUCATION SERVICES P O BOX 477 MENTONE 3194 Telephone/Fax 9587 2839 or 0412 405 403 or 0425 749 520 www.chemology.com.au

SUGGESTED SOLUTIONS TO 2008 CHEMISTRY TRIAL EXAM 1

Section A

1 D		11 D	
2 D		12 C	
3 C	In 0.5mole CO ₂ there is 1 mole of O atoms. Thus, 6.02×10^{23} atoms.	13 D	
4 C	Bases accept H ⁺ ions	14 C	
5 A		15 C	
6 B		16 C	Both are weak acids so neither will completely ionise. If X is stronger than Y then X will have a higher $[H^+]$ and a lower pH.
7 A	Mg reacts with acid and not base. NaOH neutralises acid with in an exothermic reaction.	17 A	Enzymes are proteins which are composed of amino acids.
8 B	n(H ₂ SO ₄) = (0.16 x 0.036) / 2 [H ₂ SO ₄] =[(0.16 x 0.036) / 2] / 0.012 = 0.24M	18 A	
9 D		19 D	
10 C		20 B	5 X 180 glucose units – (4 x 18) water for condensation reaction between glucose units.
		21 D	Purple MnO_4^- reduced to colourless Mn^{2+} while H_2O_2 oxidised to oxygen.

Section B

Question 1

a) 85.6 /12 : 14.4/1.1 => 7.13 : 14.3 **0** => 1 : 2 Empirical Formula CH₂ **0**

M_r = m / n = 1.00 / 0.017 = 56.3 Accept range 56.0 - 56.3 •

ii) 56.3 / 14 (mas of E/F unit CH_2) = 4 Molecular Formula C_4H_8

c) CO / C produced ①

CO is toxic/ poisonous/ forms carboxy haemoglobin / interferes with oxygen transport.

• or

C (soot) is harmful to respiratory system

Question 2 (a) O—H and 3230 to 3550 cm⁻¹; C—O and 1000 to 1300 cm⁻¹; C—H and 2840 to 3095 cm⁻¹; **[0 0** max] Award **[0]** each for any two.

(b) four peaks; **0** 3:2:2:1;**0**

1H NMR identifies the number of hydrogen environments; propan-2-ol has a different number of peaks / 3 peaks / 6:1:1 ratio; **00** infrared spectroscopy shows the same functional groups / same absorptions / isomers have the same bonds; **0**

A

b) Propyl ethanoate 0

Question 4

(a) i) fuel produced by biological processes / photosynthesis / living things / plants / 0

ii) 6CO2+6H2O → C6H12O6+6O2; **0**

Award [1] for formulas and [1] for correct balancing.

(b) (i) <u>Direct Combustion</u>

advantage

can obtain a large fraction of the energy available / more efficient / ease of use; 0

disadvantage

may cause a lot of pollution / expensive to transport / cannot replace liquid fuels; 0

(ii) Conversion to Ethanol

advantage

liquid fuel has more uses (e.g. motor vehicles) / burns more cleanly; 0

disadvantage

less energy is available from ethanol than from raw plants / time needed for conversion; ${\pmb 0}$

Do not accept both an advantage and a converse disadvantage.

Question 5

- (a) the removal of hydrogen and oxygen in the (atomic) ratio 2 : 1 / removal of water from a compound / removal of H and OH from neighbouring carbon atoms / Do not accept removal of water.
 <u>concentrated</u> sulfuric acid / <u>concentrated</u> phosphoric acid / <u>hot</u> Al₂O₃ / <u>hot</u> ceramic; [2]
 - (b) CH₃CH₂CH₂OH;

CH₃CH(OH)CH₃;

1-propanol/propan-1-ol and 2-propanol/propan-2-ol; Names must match formulas. CH₃CHCH₂;

propene;

(c) (i) C_3H_6 three peaks; relative areas 3:2:1; C_3H_7OH four peaks; relative areas 3:2:2:1; **OR** propan-2-ol three peaks; relative areas 6:1:1; (ii) C_3H_7OH absorption at 3230-3550 (cm⁻¹) due to O—H / at 1000-1300 (cm⁻¹) due to C—O; C_3H_6 absorption at 1610-1680 (cm⁻¹) due to C==C;

- - -

d)

 $C_{3}H_{6} + Br_{2} \rightarrow C_{3}H_{6}Br_{2};$ 1,2-dibromopropane; yellow/orange/brown/red colour of bromine disappears / bromine is decolorised; *Do not allow "goes clear"*.

e)

addition polymerization;

CH3 groups can be above or below the horizontal.

Question 6

a) $[H^+] = 2 \times 0.005M = 0.01M$ pH = -log (0.01) = 2 Indicator is red. b) $C_1 \times V_1 = C_2 \times V_2$ $0.005 \times 10 = C_2 \times 100$ $C_2 = 5 \times 10^{-4} M$ $[H^+] = 2 \times 5 \times 10^{-4} = 0.001M$ pH = -log (0.001) = 3 Indicator Violet • [3]

c) $H_2SO_4(aq) + 2KOH(aq) \rightarrow K_2SO_4(aq) + 2H_2O(I)$

 $n(H_2SO_4) = (5 \times 10^{-4}) \times 0.015 = 7.5 \times 10^{-6} \text{ mol}$

n(KOH) = 2 x 7.5 x 10⁻⁶ mol **0**

[KOH] = [2 x 7.5 x 10⁻⁶ mol] / 0.005 = 3.0 X 10⁻³ L = **3.0ml ●**

Question 7

(a) (i) the number of different hydrogen/proton environments / OWTTE; [1]
(ii) the environment of proton / neighbouring group / OWTTE; [1]
(iii) the ratio of the numbers of protons in each environment; [1]

b)

0.9 ppm [H on C attached to a second C / alkyl group] R—CH₃ ● 2.0 ppm H on C attached to carboxyl C / C of an ester / CH ₃—CO—OR ●

4.1 ppm H on C attached to O of carboxyl group / ester group /

Question 8

a) 60 ppm. (+/- 2) 1

b) Cu standards need to be produced and their absorption measured to produce a new standard curve. •

Silver lamp in AA needs to be replaced with copper lamp. 0