

22

CHEMOLOGY EDUCATION SERVICES P O BOX 477 MENTONE 3194 www.chemology.com.au

Telephone/Fax 9587 2839 or 0412 405 403 or 0425 749 520

SUGGESTED SOLUTIONS TO 2009 CHEMISTRY TRIAL EXAM 2

Section A

1 B		11 C	If a reaction procedes the oxidant must be higher on the table than the reductant. 1^{st} reaction X > Y 2^{nd} reaction Y ⁺ > Z 3^{rd} reaction X > Z X > Y ⁺ > Z ⁺
2 C		12 A	Electrochemical Cell, so object 1 is voltmeter. Electrons flow from X to Z thus X must be losing electrons and thus be the anode.
3 B		13 D	Rb^{2^+} is a weaker oxidant than water, water will be reduced at the cathode to produce OH ⁻ ions. The pH around the cathode will increase. Water is the only reductant present at anode and will be oxidised to H ⁺ ions. The pH will decrease around the anode.
4 D		14 B	$Pd^{2^+} + 2e \rightarrow Pd$ Ag ⁺ + e → Ag If same number of mole flowing, then there will be half as many mole Pd prodcued as Ag. With their molar masses similar, there will be roughly double the mass of Ag produced.
5 B	Removing product will cause equilibrium to shift to the right to try and increase the amount of product.	15 A	Ni is a stronger reductant thanCl ions, so Ni will undergo oxidation to Ni ²⁺ ions and Cl ₂ will be reduced.
6 C	Adding HCl will cause reaction to move backwards using up some NH_3 . However, as HCl was added the equilibrium concentration will still be higher even though the reaction has moved bcackwards.	16 C	As reaction is endothermic, as temperature increase will cause K to increase.
7 A		17 B	Molten KBr, only K^+ and Br^- ions present so K^+ is reduced to K at the cathode and Br_2 at the anode.
8 C	$[H^+] = 10^{-14}/2.5 \text{ pH} = -\log(10^{-14}/2.5) = 14.4$	18 B	$\Delta H = H \text{ (products - reactants)} = 300 - 250 = 50$ Endothermic Ea forward = 450 - 250 = 200 Ea reverse = 450 - 300 = 150
9 C	As reaction is endothermic, T increase will cause K increase and reaction moves to the right. $[H^+]$ increase and pH decreases. Solution remains neutral due to $[H^+] = [OH^-]$	19 D	At anode water is the only reductant in contact with the electrode, so water will undergo oxidation to oxygen.
10 B	$\begin{array}{l} n(\text{HCI}) = 0.08 \ x \ 0.02 = 0.0016 \ \text{mol} \\ n(\text{NaOH}) = 0.05 \ x \ 0.03 = 0.0015 \ \text{mol} \\ n(\text{HCI}) \ xs = 0.0016 - 0.0015 = 0.0001 \ \text{mol} \\ [\text{HCI}] = 0.0001 \ / \ [(20 + 30)/1000] = 0.002\text{M} \\ p\text{H} = -\log \ (0.002) = 2.7 \end{array}$	20 C	Copper will not react at the cathode (-ve) electrode as copper is a reductant. Water will be reduced to hydrogen. The mass of copper is unaffected. Cations will move towards the negative electrode – to the right.

©Chemology - Chemistry Unit 4 Trial Exam 2009

Section B 0 = 1 mark

Question 1

(a) (i) Δ H / molar mass = Enrgy per gram Petrol 5460/114 = 47.9 Kerosene 10 000/210 = 47.6 Hydrogen 285/2 = 142.5 Ethanol 1370/46 = 29.8 Hydrogen has greatest energy per gram

(b)mass = d x V = 80 000 x 0.69 = 55 200g **①** Mole = 55200g / 114 = 484.21mol **①** Energy = 484.21 x 5460 = **2.64 x 10⁶ kJ ①**

(c) $1 \text{mol } H_2 = 285 \text{kJ}$ x mol = 2.64 x 10⁶ kJ x = 2.64 x 10⁶ / 285 = 9276.5 mol

pV = nRT

 $V(H_2) = \frac{9276.5 \times 8.31 \times 298}{100}$ = 229720 = **2.30 × 10⁵ L** •

Question 2

(a) Carbon dioxide produced.

(b) A larger surface area of crushed particles will have a larger area of contact and result in more fruitful collisions between particles.

A higher concentration will mean there are more acid particles present in the solution and more chance of successful collisions between particles. \bullet

Both of these situations will lead to an increase in the rate of the reaction.

(c) The temperature of the room will have been higher. • The higher temperature will result in the particles moving more quickly • and will have more energy to be able to overcome the activation energy barrier.•

Question 3

a) Sn(s) → Sn⁴⁺ (l) + 4e
b) Q = 0.2 x 5 x 60 x 60 = 3600C ① n(e) = Q/F = 3600/96500 = 0.0373 mol ① n(Sn) = 0.0373 / 4 ① m(Sn) = n x 118.7 = **1.12g** ①

Question 4

Predominant Reaction CH₃COOH (aq) + H₂O(I) \rightarrow CH₃COO⁻ (aq) + H₃O⁺ (aq) **0**

Ka = $\underline{[CH_3COO^-] [H^+]}$ [CH_3COOH] 1.80 X 10⁻⁵ = $\underline{[H_3O^+]^2}$ 1.5 [H⁺] = 0.00519 M **0**

pH = -log 0.00519 = **2.3** ❶

Question 5

a) $2Cl^{-}$ (aq) $\rightarrow Cl_{2}$ (g) + 2e \bullet

b) Positive **0**

c) In aqueous solution water is a stronger oxidant than Na⁺ ${\rm O}$ and water will be preferentially reduced. ${\rm O}$

d) Molten NaCl. 0

Question 6

a) **Advantage:** Increase rate of reaction. **①** As temperature decreases K increases however, rate of reaction will be slow so a catalyst is used to speed up rate and not compromise yield. **①**

b) As pressure increases favours side with smaller mole of particles $\mathbf{0}$, in this reaction it is to the right. $\mathbf{0}$ Thus [NO₂] will increase. $\mathbf{0}$

c) i)
$$K = [N_2O_4] [NO_2]^2$$

ii) & iii)

	NO ₂	N_2O_4
n(initially)	0.132	0
n (reacts)	2 x 0.0400 = 0.08 0	0.0400
n(At equilibrium)	X = 0.132-0.08=0.052 mol	0.0400 mol
Concentration at		
equilibrium	0.052 M	0.04M

iii) $K = \frac{0.04}{(0.052)^2}$ **0** = **14.8 M⁻¹ 0**

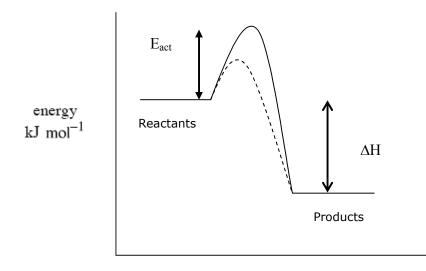
iv) As K decreased when temperature increased the reaction is exothermic. **OO** As energy is a product, increasing temperature will cause reaction to move backwards.

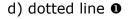
25

v) **Change:** Temperature decreased \bullet Reaction is endothermic as temperature decreases K decreases \bullet , reaction moves backwards more N₂O₄ is produced. \bullet

Question 7 a) Anode Pb (s) + SO₄²⁻ (aq) → PbSO₄ (s) + 2e **0** or Pb (s) → Pb²⁺ (aq) + 2e Cathode PbO₂ (s) + 4H⁺ (aq) + SO₄²⁻ (aq) + 2e → PbSO₄ (s) + 2H₂O (l) **0** Or Pb⁴⁺ (aq) + 2e → Pb²⁺ (aq)

b) Concentration decreases/ density decreases/ pH increases 0


c) Advantage rechargable/ delivers large amounts of energy 0


Disavantage bulky/ acid spillage/ heavy/ toxic 0

Question 8

- a) Exothermic ① Heat is produced during reaction. ①
- b) Small **O**as reaction proceeds at room temperature. **O**

c) **00**

