## **CHEMISTRY**

## Unit 3 – Written examination 1



## **2009 Trial Examination**

# **SOLUTIONS**

## SECTION A – Multiple-choice questions (1 mark each)

## **Question 1**

Answer: C

#### Explanation:

An absorbance of 24 corresponds to a concentration of around 13.7. This sample was diluted  $1:100 \Rightarrow 1370$ 

## **Question 2**

Answer: C

Explanation:

 $n(Cu^{2+}) = \frac{.00137}{63.5} = 0.0000216$  $n(CuCl_2) = 0.0000216$ mass = 0.0000216x(63.5 + 71) = 2.90

## **Question 3**

Answer: A

## Explanation:

This is a weak acid and a strong base. The equivalence point will be around pH = 9 hence phenolphthalein.

Answer: B

Explanation:

mass = 24x0.5 = 12g $n = \frac{12}{151} = 0.0795$ 

## **Question 5**

Answer: D

*Explanation*: O

The H-O is an alkanol and the N - C is an amide group

## Question 6

Answer: A

Explanation:

mass = 160x0.15 = 24

## **Question 7**

Answer: D

## Explanation:

For the pH to change by 2, the volume must change by 100. New volume will be  $100 \times 100 = 10000 \text{ mL}$ . 9900 mL must be added to 100 to give this.

## Question 8

Answer: C

Explanation:

n(sulfuric) = 0.4x0.01 = 0.004moln(KOH)=2x0.004 = 0.008 c(KOH) =  $\frac{n}{v} = \frac{0.008}{0.02} = 0.4M$ c(HCl)= $\frac{0.008}{0.008} = 1M$ 

Answer: C

Explanation:





3 different H and same 3 C

All H's same and 2 different C

**Question 10** 

Answer: A

Explanation:

Molecule B does not have any - CH<sub>2</sub>- groups. This weighs 14 and CH<sub>3</sub>CH<sub>2</sub> - weighs 29. Molecule A should have these peaks but not B.

## **Question 11**

Answer: C

Explanation:



1-butanol to specify the location of the –O-H butanoic acid does not have a 1, as the carboxylic group can only go on the one spot the ester is from methanol and methanoic acid = methyl methanoate

## **Question 12**

Answer: C

## *Explanation*:

The molecule is a polymer due to the large value of M. It is not a carbohydrate because it has N and S. It is a protein, due to the S, and an enzyme is an example of a protein.

Answer: B

#### Explanation:

Ethene and chlorine gas would contain two chlorine atoms. Ethene plus HCl would give the desired product along with an isomer of it. Substitution on the alkane would require chlorine gas.

## Question 14

Answer: A

Explanation:

This requires pentanol and propanoic acid. The propanoic acid can be formed from propanol using dichromate ions.



## **Question 15**

Answer: B

Explanation:

Product is polyethene. It is made from ethene using addition polymerisation.

## Question 16

Answer: C

## Explanation:

1700 cm<sup>-1</sup> would correspond to C=O or C=C. This is molecule C

## Question 17

Answer: A

## Explanation:

The NH2 is an amine, -COOC- ester, O - H alkanol, -CO-NH - amide

Answer: A

Explanation:

- G - G - C - A - A - T - G - A - - C - C - G - T - T - A - C - T -

The complementary bases are thymine with adenine and cytosine with guanine

## **Question 19**

Answer: D

## Explanation:

 $C_{18}H_{32}O_2$  For  $C_{18}$ , H 36 would be all single bonds – hence two double bonds. All fatty acids have a long non polar part with a small polar part. The polar part has a C=O

## Question 20

Answer: D

Explanation:

Fructose has the same molecular formula and mass as glucose,  $C_6H_{12}O_6$  mass 180. 2200 monomers will release 2199 water molecules. Mass = 2200x180 - 2199x18 = 356418

## **SECTION B – Short answer questions**

An \* indicates the allocation of 1 mark

#### **Question 1**

#### Each technique can only be used once.

| <b>Task</b><br>Identification of amino<br>acids present in a<br>health bar | Method chosen<br>TLC* | <b>Justification</b><br>Amino acids will move different speeds<br>– develop with ninhydrin* |
|----------------------------------------------------------------------------|-----------------------|---------------------------------------------------------------------------------------------|
| Concentration of a solution of lithium hydroxide                           | Acid/base titration*  | Standard way to find the concentration of a base*                                           |
| Distinguish between<br>two isomers of butane                               | NMR*                  | Different peak shifts and different splitting patterns*                                     |
| Concentration of lead ions in waste water                                  | AA*                   | Lead can be analysed by AA*                                                                 |
| Chloride ion<br>concentration in<br>mineral water                          | Precipitation*        | Addition of silver nitrate solution*                                                        |
| Empirical formula of a hydrocarbon molecule                                | Mass spec*            | The exact mass of parent ion will match a particular carbon:hydrogen ratio*                 |

Total 12 marks

## **Question 2**

- a. I<sub>2</sub>(aq) + 2e<sup>-</sup> → 2I<sup>-</sup>(aq) \*
  b. C<sub>6</sub>H<sub>4</sub>O<sub>2</sub>(OH)<sub>4</sub>(aq) + I<sub>2</sub>(aq) → C<sub>6</sub>H<sub>4</sub>O<sub>2</sub>(OH)<sub>2</sub>(aq)+2H<sup>+</sup>(aq) + 2I<sup>-</sup>(aq) \*
  c. i. The blue colour will linger\* when iodine is finally in excess\*
  - ii. This is not an acid/base indicator hence the K value is irrelevant \*

2 + 1 = 3 marks

| d. | $n(I_2) = 0.02x0.104 = 0.00208mol$<br>$c(ascorbic) = \frac{0.00208}{0.01856} = 0.112M$ ** |             |               |                   |                    |
|----|-------------------------------------------------------------------------------------------|-------------|---------------|-------------------|--------------------|
|    | 0.01830                                                                                   |             |               |                   | 2 marks            |
| e. | The concentration of an iodine solution                                                   | does not re | emain stable* |                   | 1 mark             |
| f. | functional group                                                                          | fr          | equency       |                   |                    |
|    | hydroxyl                                                                                  |             | 3400 *        |                   |                    |
|    | arrhamul (C=O)                                                                            |             | 1700 *        | $(a \pi C - C)$   |                    |
|    | carbonyr (C-O)                                                                            |             | 1700 *        | $(0\Gamma C - C)$ | 2 marks            |
| g. | C <sub>3</sub> H <sub>4</sub> O <sub>3</sub> *                                            |             |               |                   |                    |
|    |                                                                                           |             |               | Total             | 1 mark<br>11 marks |
| Qu | estion 3                                                                                  |             |               |                   |                    |
| a. | А                                                                                         | В           |               |                   |                    |
| Н  | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                     |             |               |                   |                    |
|    | 1-chloropropane *                                                                         | 2-chloro    | propane *     |                   |                    |
|    | С                                                                                         | D           |               |                   |                    |
| н  | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                     | - cH        |               |                   |                    |
|    | 1-propanol (propan-1-ol)*                                                                 | pr          | opanoic acid* | k                 | 4 marks            |
| b. | Name the type of reaction that is respon                                                  | sible for   |               |                   | + 111 <i>a</i> 1K5 |
|    | $C_3H_6 \rightarrow A$ addition                                                           | l *         |               |                   |                    |
|    | $A \rightarrow C$ substitution                                                            | on *        |               |                   |                    |

 $C \rightarrow D$  oxidation \*

3 marks

**c. i**. 1H NMR\*

ii. 2-chloropropane has more identical hydrogen atoms  $-6^*$  It has one less peak\* and the area under the peaks will reflect the 6 equal hydrogens

1 + 2 = 3 marks

- d. i. 60 \*
  ii. 43 \* OH fragment off \*
  15 CH<sub>3</sub> fragment \*
  - iii. It contains Cl. Chlorine atoms have two isotopes <sup>35</sup>Cl and <sup>37</sup>Cl. The mass of these differs by 2. \*

1 + 2 + 1 = 4 marks

e. It must be a primary alkanol to form a carboxylic acid. \*

1 mark Total 15 marks

#### **Question 4**

**a**. mass oxygen = 4.111 - 2.667 - 0.555 = 0.889 g

\*

 $\frac{2.667}{12} : \frac{0.555}{1} : \frac{0.889}{16} \qquad * = C_4 H_{10} O *$ 0.2220 : 0.555 : 0.055

3 marks

1 mark

**b**. C  $_{4}H_{10}O$  \*

C.



2 marks

**d**. That is contains an alkanol group but no carbonyl (C=O) group \*

1 mark

e. This matches the molecule above on the right: 2-methylpropan-1-ol\*\*

2 marks

Total 9 marks



+ H-O-H\*

Amine\*

**a.** (The S—H is also a functional group)

b. cysteine \*

C.





| d.   | * |
|------|---|
| •••• |   |

2 marks

1 mark

2 marks

1 mark

e. i.  $3.8 \div x \ 0.43 = 8.84 \text{ cm} *$ 

ii. stationary phase: silica gel\* mobile phase: isobutanol\*

2 marks Total 9 marks



- ii. Thymine and adenine are complementary; every instance of one has the other joined to it. \*
- **c. i**. polymerase chain reaction \*
  - ii. positive as the phosphate groups are always negative \*
  - iii. the fragments have different masses. The heavy fragments move more slowly \*
  - iv. A child's DNA will have some parts in common with its mother but DNA will not be identical. One strand of a child's DNA comes from each parent. \* 1 + 1 + 1 + 1 = 4 marks

Total 9 marks

1 + 1 = 2 marks

## **Question 7**

**a**. BaCl<sub>2</sub>(aq) + 2AgNO<sub>3</sub>(aq)  $\rightarrow$  Ba(NO<sub>3</sub>)<sub>2</sub>(aq) + 2AgCl(s) \*

1 mark

**b**. 
$$n(\text{AgNO}_3) = cxv = 0.1x0.025 = 0.0025 mol * n(\text{Ba}^{2+}) = \frac{0.130}{137.3} = 0.000947 \text{ mol } *$$

need twice as much AgNO<sub>3</sub>, which we have=> it is in excess \*

3 marks Total 4 marks