

Rehearse and remember

Practice exam 1

answers

VCE Chemistry

Units 1 & 2

Chemistry

Practice Examination 1 Answers

The sample answers provided here are guidelines only as to what would be appropriate responses. Remember that, in order to satisfy the requirements of the external examination(s), you must submit work that is clearly your own.

Section A – Multiple-choice questions

- Q1 CQ2 DQ3 CQ4 D
- Q5 BQ6 C
- **Q7** C
- **Q8** D
- **Q9** B
- **Q10** A
- **Q11** C
- **Q12** C
- **Q13** B
- **Q14** D
- **Q15** B
- **Q16** A
- **Q17** C
- **Q18** A **Q19** C
- **Q20** B

1

Section B - Short-answer questions

Question 1

a Any one of the following:

Individual (1 mark)	Contribution (1 mark)
Dalton	Proposed that matter is made up of tiny,
	indivisible particles
Thomson	Proposed that atoms are positively charged
	spheres with electrons embedded in them
Rutherford	Developed the nuclear model; that is, the atom
	is mostly empty space with a positively charged
	nucleus with orbiting electrons
Bohr	Placed electrons into certain orbits of fixed
	energy called shells
Schrödinger	Proposed that electrons behave as negative
	clouds of charge found in regions of space
	called orbitals
Chadwick	Identified the neutron; that is, proposed that the
	nucleus contains positive protons and neutral
	neutrons

b i 17

ii 35 - 17 = 18

(1 mark)

(1 mark)

Relative atomic mass is a weighted average (1 mark) of the masses of all of the isotopes of an element. This is an atom of one of the isotopes. (1 mark)

iv $1s^22s^22p^63s^23p^5$

(1 mark)

 $v = 1s^2 2s^2 2p^6 3s^2 3p^6$

(1 mark)

Question 2

a Any one of the following:

Individual (1 mark)	Contribution (1 mark)
Mendeleev	Devised a periodic table in which elements were arranged in
	order of increasing atomic mass; elements with similar
	chemical properties were grouped together. Predicted the
	properties of elements as yet undiscovered
Rayleigh	Discovered some of the noble gases
Ramsay	Discovered some of the noble gases
Mosely	Rearranged the periodic table after the discovery of protons so
	that elements were placed in order of increasing atomic
	number instead of increasing atomic mass
Seaborg	Discovered many of the transuranium elements

b i Ca

ii Ar

iii C or Si

iv Na or Mg

v Li

vi N

(1 mark each)

c Chemical reactivity increases (1 mark) because the outer-shell electrons become further from the nucleus (1 mark) and are more readily released.

Question 3

a % N in compound =
$$\frac{M(\text{N in formula})}{M(\text{formula})} \times 100 \text{ (1 mark)}$$

= $\frac{28.0}{148.3} \times 100$
= 18.9%

(1 mark)

b i
$$\frac{18.9}{100} = \frac{3.45}{m(\text{Mg(NO}_3)_2)}$$

 $m(Mg(NO_3)_2) = 18.3 g$

(1 mark)

ii
$$n(Mg(NO_3)_2) = \frac{m}{M}$$
 (1 mark)
= $\frac{18.3}{148.3}$
= 0.123 mol (1 mark)

iii $n(\text{atoms}) = n(\text{compound}) \times \text{number of ions in compound}$ = 0.123 × 3 = 0.369 mol

(1 mark)

$$N(\text{atoms}) = n \times N_A$$

= 0.369 × 6.02 × 10²³
= 2.22 × 10²³ atoms

(1 mark)

Question 4

a
$$m(C) = 10.8 \text{ g}$$
 $m(H) = 12.6 - 10.8 = 1.80 \text{ g}$ (1 mark)

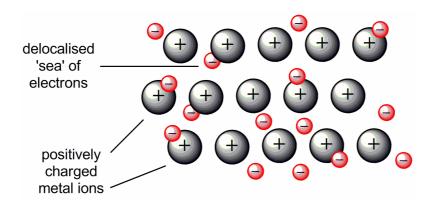
C H
m 10.8 g 1.80 g
n
$$\frac{10.8}{12} = 0.900 \text{ mol}$$
 $\frac{1.8}{1} = 1.80 \text{ mol}$
 $\frac{0.900}{0.900} = 1$ $\frac{1.80}{0.900} = 2$

Empirical formula is CH_2 (1 mark)

b $M(CH_2) = 14.0 \text{ g mol}^{-1}$

$$\frac{56}{14.0} = 4$$
 (1 mark)

Molecular formula is C_4H_8 (1 mark)


Question 5

a Structure: a lattice arrangement of cations surrounded by a sea of delocalised electrons

(1 mark).

Bonding: electrostatic attraction between the positively charged cations and the negatively charged electrons giving rise to metallic bonding.

(1 mark)

(1 mark)

b The electrons are charged particles that can move freely through the lattice.

(1 mark)

c When a sample of magnesium is hammered into a new shape, the cations can be moved with respect to one another but the 'sea' of electrons still surrounds them and the metallic bonds are not broken.

(1 mark)

- **d** Two of:
 - alloying
 - work hardening
 - heat treatment.

(1 mark each up to 2 marks)

Question 6

a

(1 mark)

b

(1 mark)

c Covalent bonding, which is the sharing of electrons

(1 mark)

d The ammonia molecule is a dipole containing highly polar N–H bonds. One end of an ammonia molecule electrostatically attracts the oppositely charged end of an adjacent ammonia molecule. (1 mark) This kind of electrostatic attraction is called a hydrogen bond. (1 mark)

Question 7

a

 $\begin{array}{ccc} \textbf{b} & \textbf{i} & \text{ethene} \end{array} \tag{2 marks}$

ii methylpropane (1 mark)

(1 mark)

c methane

(1 mark)

Question 8

a Nanotechnology involves the manipulation of materials at the nano size (0.1–100 nm).

(1 mark)

- **b** For example:
 - transparent sunscreen that can filter UV radiation
 - drug delivery systems
 - stain-free clothing
 - non-porous gases.

(1 mark)