

Rehearse and remember Practice exam 2 VCE Chemistry Units 1 & 2

Chemistry

Practice Examination 2

Reading time: 15 minutes **Writing time:** 1 hour 30 minutes

Section	Number of questions	Number of questions to be answered	Number of marks	Suggested times (minutes)
Α	20	20	20	30
В	6	6	52	60
			Total 72	90

Disclaimer

This is a practice examination. It represents Pearson Australia's view only of what would be useful preparation material for the externally assessed examination.

Section A – Multiple-choice questions

Instructions for Section A

Answer **all** questions in pencil on the answer sheet provided for multiple-choice questions. Choose the response that is **correct** or that **best answers** the question. A correct answer scores 1; an incorrect answer scores 0. Marks will **not** be deducted for incorrect answers. No marks will be given if more than one answer is completed for any question. **The chemistry data book should be used with this exam**.

Question 1

Which of the following statements about water is **not** correct?

- A Water is able to dissolve many substances because it is a polar molecule.
- **B** Water expands on freezing because of the way each water molecule bonds to surrounding water molecules.
- **C** Water is able to conduct electricity because it contains a small number of free-moving electrons.
- **D** Water is a good coolant because of its high latent heat values.

Question 2

Which of the equations below best represents ethanol dissolving in water?

- A $C_2H_5OH(l) \xrightarrow{H_2O(l)} C_2H_5OH(aq)$
- **B** $C_2H_5OH(1) + H_2O(1) \rightarrow C_2H_5O^{-}(aq) + H_3O^{+}(aq)$
- C $C_2H_5OH(s) \xrightarrow{H_2O(l)} C_2H_5OH(l)$
- **D** $C_2H_5OH(s) + H_2O(l) \rightarrow C_2H_5OH(aq)$

Question 3

Which of the following describes the types of bonds broken in the solute and formed with water when hydrogen chloride dissolves?

	Bonds broken	Bonds formed	
Α	covalent	hydrogen and dipole-dipole	
В	dipole-dipole	covalent and dipole-dipole	
С	dipole-dipole	hydrogen and dipole-dipole	
D	covalent	covalent and dipole-dipole	

Question 4

Which of the following solutions would have the highest pH?

- A lemon juice
- **B** 1.0 M hydrochloric acid
- C 1.0 M sodium hydroxide
- **D** 1.0 M ammonium ions

Which of the following represents a dilute solution of a strong acid?

- **A** 0.10 M HNO₃
- **B** 8.0 M CH₃COOH
- С 0.01 М CH₃COOH
- **D** 6.0 M HNO₃

Question 6

Which of the following is the conjugate base of $H_2PO_4^{-?}$?

- A H₃PO₄
- **B** $\operatorname{HPO_4}^{2-}$
- С Н₂О
- D OH-

Question 7

The mass, in grams, of Na_2CO_3 required to be dissolved in water to make 300 mL of 0.150 M solution is:

- A 0.045
- **B** 2.30
- C 4.77
- **D** 15.9

Question 8

A 5.0 g sample of magnesium carbonate reacts with an excess amount of nitric acid according to the equation:

 $MgCO_{3}(s) + 2HNO_{3}(aq) \rightarrow Mg(NO_{3})_{2}(aq) + CO_{2}(g) + H_{2}O(I)$

The mass, in grams, of carbon dioxide formed is:

- A 0.059
- **B** 1.3
- C 2.6
- **D** 5.0

Question 9

The pH of a 0.0100 M solution of HNO₃ is:

- **A** 1
- **B** 2
- **C** 11
- **D** 12

Question 10

The number of chloride ions present in 30 g of $CaCl_2$ is closest to:

- A 0.270
- **B** 1.63×10^{23}
- C 3.25×10^{23}
- **D** 4.88×10^{23}

Which of the species below is the strongest oxidant?

- $\mathbf{A} = \mathbf{A}\mathbf{g}^+$
- B Br⁻
- C Mg²⁺
- D Ca

Question 12

Which one of the following metals would you predict to react spontaneously with lead ions but not zinc ions?

- A Cu
- B Sn
- C Al
- D Mg

Questions 13 and 14 refer to the following information. The following diagram represents a galvanic cell.

Question 13

Which one of the following correctly describes the cathode, anode and direction of electron flow when the wires are connected at 25°C?

	Cathode	Anode	Direction of electron flow
A	Pb	Ag	left to right
B	Pb	Ag	right to left
С	Ag	Pb	right to left
D	Ag	Pb	left to right

Question 14

When the circuit is made complete, 3.00 g of lead, Pb, is consumed. The mass of silver produced is:

- A 0.781 g
- **B** 1.56 g
- C 3.00 g
- **D** 3.12 g

The following issues may be considered to be potential problems for the inhabitants of Earth.

- I Too much heat is trapped at the Earth's surface.
- II The ozone layer is depleted.
- III More UV light is allowed to the Earth's surface.

Which of the above is/are the result of the enhanced greenhouse effect?

- A I only
- **B** II and III only
- C I and III only
- **D** I, II and III

Question 16

The process in the nitrogen cycle that **does not** involve the activity of bacteria in the soil is:

- A ammonium ions from excreted waste are converted to nitrate ions
- **B** nitrogen in the atmosphere is converted to soluble ions in the soil
- C soluble ions are converted to nitrogen which is returned to the atmosphere
- **D** nitrogen in the atmosphere is converted to nitrogen oxides.

Question 17

A 1.5 L glass jar contains gas at a pressure of 3.50 atm. If the contents of the jar are transferred to a 3.0 L container and the temperature kept constant, the pressure of the gas, in atm, will be:

- A 1.29
- **B** 1.75
- C 3.50
- **D** 7.00

Question 18

A balloon is blown up to a volume of 1.65 L on a cold day when the temperature is 14°C. The next day the temperature is 22°C. If the pressure of the balloon remains constant, the volume, in litres, of the balloon the next day will be:

- A 1.05
- **B** 1.65
- C 1.70
- **D** 2.59

Question 19

The temperature, in °C, of 16.0 g of oxygen gas that occupies 16.0 L at a pressure of 1.00 atm is:

- A -78.0
- **B** 117
- C 195
- **D** 390

Question 20

Which of the following gases will occupy the largest volume at STP?

- **A** 7.0 g of H₂
- **B** 7.0 g of N₂
- C 7.0 g of O₂
- $\mathbf{D} \qquad 7.0 \text{ g of } F_2$

END OF SECTION A

Instructions for Section B

Answer all questions in the spaces provided.

To obtain full marks for your responses you should:

- give simplified answers with an appropriate number of significant figures to all numerical questions
- show all working in your answers to numerical questions
- make sure chemical equations are balanced and that the formulas for individual substances include an indication of state.

Question 1

Water is abundant in the environment. Two molecules of water are represented in the following diagram.

a Give the name of the bond type represented by each of the labels on the diagram indicated by:

- i label A _____
- ii label B _____

1 + 1 = 2 marks

b Briefly explain the following properties of water.

i Water has a relatively high melting temperature compared to other molecular compounds of the same size.

ii Water expands on freezing.

1 + 1 = 2 marks

- c 5.00 g of table salt (NaCl) is dissolved in water and the solution made up to 200 mL with water.
 i Write a chemical equation to represent this process.
 - ii Draw a labelled diagram to show the arrangement of water molecules around the dissolved sodium ions and chloride ions.

iii Calculate the molar concentration of the solution.

1 + 3 + 2 = 6 marks

Total 10 marks

Question 2

Untreated water undergoes a series of treatment steps before it can be used as drinking water.

- **a** Flocculation is one step in the process. Flocculation is an example of a precipitation reaction.
 - **i** Give a brief definition of a precipitation reaction.

ii Give a chemical equation that represents an example of a precipitation reaction.

iii Give one type of impurity that is removed from untreated water by the process of flocculation.

1 + 2 + 1 = 4 marks

b Give the name of one other treatment step in the process of water purification and briefly describe its purpose.

2 marks Total 6 marks

Question 3

- **a** Calculate the pH of the following solutions:
 - i 0.100 M Ca(OH)₂

ii A 100 mL solution in which 1.35 g of gaseous hydrogen chloride has been dissolved.

3 + 3 = 6 marks

b Write a balanced chemical equation for the reaction between aqueous hydrochloric acid and sodium carbonate in which bubbles are observed.

2 marks

c 15.0 g of Ca is added to a solution containing 15.0 g of ethanoic acid and allowed to react according to the equation:

 $Ca(s) + 2CH_3COOH(aq) \rightarrow Ca(CH_3COO)_2(aq) + H_2(g)$

i Calculate the mass, in grams, of Ca(CH₃COO)₂ produced.

ii Calculate the volume, in litres, of H_2 produced, at 15°C and 1.5 atm pressure.

4 + 3 = 7 marks Total 15 marks

Question 4

A small sample of zinc is added to a solution of hydrochloric acid. Some zinc chloride and hydrogen gas is produced.

a Write a half equation for the reduction reaction.

1 mark

b Write a half equation for the oxidation reaction.

1 mark

c Write a balanced full equation for the reaction.

d Identify the oxidant and reductant in this reaction.

Oxidant		
Reductant _		

2 marks Total 6 marks

Question 5

b

During your studies this semester, you will have examined the laboratory and industrial production of one gas of significance to the quality of the atmosphere.

a Give the name and two properties of the gas you studied.

Describe the laboratory preparation of this gas. Include an appropriate equation in your answer.

2 marks

2 marks

c State two of the principles of green chemistry.

2 marks

- **d** A reduction in the quality of the atmosphere can have significant consequences for the Earth's inhabitants. One such problem is acid rain.
 - i Use an equation to describe the production of acid rain from a gas in the atmosphere.

ii Outline one effect of acid rain on plants or animals.

1 + 1 = 2 marks Total 8 marks

- **a** Use kinetic molecular theory to explain the following observations.
 - i An aerosol can that is heated may explode.

ii Gases expand to fill any container.

2 + 1 = 3 marks

b The Hazelwood power station in the Latrobe Valley uses about 250 000 tonnes of coal each week (1 tonne = 10^6 g). The coal used in the power station contains about 25.0% carbon. Calculate the volume of carbon dioxide, in litres, released each week by the power station at STP that is due to the burning of coal.

4 marks Total 7 marks

END OF SECTION B

Practice Exam 2

Section A – Multiple choice

Answer sheet

Fill in the answer sheet by putting a cross in the correct box.

	Α	В	С	D
1				
2				
3				
4				
5				
6				
7				
8				
9				
10				
11				
12				
13				
14				
15				
16				
17				
18				
19				
20				