

Student name

CHEMISTRY Unit 1 Trial Examination

QUESTION AND ANSWER BOOK

Total writing time: 1 hour 30 minutes

Structure of book		
Section	Number of questions	Number of marks
A	20	20
В	9	67
	Total	87

- Students are permitted to bring into the examination room: pens, pencils, highlighters, erasers, sharpeners, rulers, an approved scientific calculator.
- Students are NOT permitted to bring into the examination room: blank sheets of paper and/or white out liquid/tape.

Materials supplied

• Question and answer book of 14 pages, with a detachable data sheet in the centrefold and a detachable answer sheet for multiple-choice questions inside the front cover.

Instructions

- Detach the data sheet from the centre of this book and the answer sheet for multiple-choice questions during reading time.
- Write your **name** in the space provided above on this page and on the answer sheet for multiple-choice questions.
- All written responses should be in English.

At the end of the examination

• Place the answer sheet for multiple-choice questions inside the front cover of this book.

Published by STAV Publishing. STAV House, 5 Munro Street, Coburg VIC 3058 Australia.

Phone: 61 + 3 9385 3999 • Fax: 61 + 3 9386 6722 • Email: stav@stav.vic.edu.au Website: http://www.sciencevictoria.com.au/stavpublishing © STAV Publishing April 2010

ABN 61 527 110 823

All rights reserved. Except under the conditions described in the Copyright Act 1968 of Australia and subsequent amendments, no part of this publication may be reprinted, reproduced or utilised in any form or by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying and recording, or in any other information storage or retrieval system, without permission in writing from the publisher.

STAV Publishing 2010

CHEMISTRY Unit 1 Trial Examination MULTIPLE CHOICE ANSWER SHEET

STUDENT	
NAME:	

INSTRUCTIONS:

USE PENCIL ONLY

- Write your name in the space provided above.
- Use a **PENCIL** for **ALL** entries.
- If you make a mistake, **ERASE** it **DO NOT** cross it out.
- Marks will **NOT** be deducted for incorrect answers.
- NO MARK will be given if more than ONE answer is completed for any question.
- Mark your answer by **SHADING** the letter of your choice.

	ONE ANSWER PER LINE		ONE ANSWER PER LINE
1	A B C D	11	A B C D
2	A B C D	12	A B C D
3	A B C D	13	A B C D
4	A B C D	14	A B C D
5	A B C D	15	A B C D
6	A B C D	16	A B C D
7	A B C D	17	A B C D
8	A B C D	18	A B C D
9	A B C D	19	A B C D
10	A B C D	20	A B C D

SECTION A – Multiple-choice questions

Instructions for Section A

Answer all questions in pencil on the answer sheet provided for multiple-choice questions.

Choose the response that is **correct** or that **best answers** the question.

A correct answer scores 1, an incorrect answer scores 0.

Marks will **not** be deducted for incorrect answers.

No mark will be given if more than one answer is completed for any question.

Question 1

Which of the following atoms has the greatest number of neutrons?

- **A.** ⁵⁸Fe
- **B.** ⁵⁷Co
- **C.** ⁵⁶Mn
- **D.** ⁵⁶Ni

Question 2

In the ground state, the electrons of a scandium (III) ion occupy

- A. 2 shells
- **B.** 3 shells
- C. 4 shells
- **D.** 5 shells

Question 3

A substance melts at high temperature, is insoluble in water, and does not conduct electricity in both the solid and liquid states. This substance is most likely to be

- A. Al
- **B.** O₂
- **C.** CH₄
- **D.** SiO_2

Question 4

How many lone pairs does the phosphorus atom have in its valence shell in a phosphine, PH₃ molecule?

- **A.** 0
- **B.** 1
- **C.** 2
- **D.** 3

The neutron was discovered by

- **A.** Francis Aston in the 19th century
- **B.** James Chadwick in the 19th century
- **C.** Francis Aston in the 20th century
- **D.** James Chadwick in the 20th century

Question 6

Which of the following is **not** a property of an ionic compound?

- A. conduction of electricity when molten
- **B.** crystalline structure
- C. high melting temperature
- **D.** malleability

Question 7

A substance melts at 1640 °C and conducts electricity in both solid and liquid states. The solid structure of the substance is most likely to be

- **A.** an ionic lattice
- **B.** a covalent network lattice
- **C.** a molecular lattice
- **D.** a metallic lattice

Question 8

Which one of the following formulae represents a polar molecule?

- **A.** CH₄
- **B.** CCl_4
- **C.** CO₂
- $\textbf{D.} \quad CH_3Cl$

Question 9

1,4 pentadiene contains

- A. no tetrahedral carbon atoms
- **B.** one tetrahedral carbon atom
- **C.** two tetrahedral carbon atoms
- **D.** four tetrahedral carbon atoms

The correct IUPAC name of CH₃CH(OH)CH₃ would be

- **A.** propyl hydroxide
- **B.** 2-hydroxypropane
- C. 2-propanol
- **D.** methyl ethanol

Question 11

The number of hydrogen atoms present in butan-1-ol is

- **A.** 8
- **B.** 9
- **C.** 10
- **D.** 11

Question 12

The significant type(s) of chemical bonding present in an aqueous solution of ethanol are

- A. covalent only
- **B.** hydrogen bonding only
- C. covalent and hydrogen bonding
- **D.** dispersion forces

Question 13

Which one of the following substances is **not** able to form an addition polymer?

- A. $CH_3(CH_2)_5CHCCl_2$
- $\mathbf{B.} \quad \mathbf{C}_2\mathbf{H}_2\mathbf{Cl}_2$
- $\mathbf{C}.\quad \mathbf{C}_{2}\mathbf{H}_{3}\mathbf{C}\mathbf{l}$
- **D.** CH₃CHClCH₂Cl

Question 14

The number of different isomers represented by the formula C_4H_{10} is

- **A.** 1
- **B.** 2
- **C.** 3
- **D.** 4

The next two questions refer to the following information

A variety of whisky contains 40.0 % v/v alcohol

Question 15

The alcohol present in alcoholic drinks is

- **A.** CH₃OH
- **B.** CH₃CH₂OH
- C. CH₃CH₂CH₂OH
- **D.** both CH₃OH and CH₃CH₂OH

Question 16

If a serve of whisky contains 40 mL and a person drinks a double serve, the volume of alcohol consumed is

- **A.** 16 mL
- **B.** 24 mL
- **C.** 32 mL
- **D.** 48 mL

Question 17

The following list contains molecular formulae of three organic compounds.

I. $C_2H_4O_2$ II. C_2H_6O III. $C_2H_6O_2$

The listed formulae that could represent a carboxylic (alkanoic) acid(s) is/ are

- A. I only
- **B.** III only
- C. I and III only
- **D.** I, II, and III

Question 18

There are 0.25 mol of atoms in

- **A.** 7.0 g of N₂
- **B.** 6.0 g of C
- **C.** 8.0 g of S₈
- **D.** 8.0 g of O₂

It is known that 6.53 g of zinc reacts with 25.40 g of iodine (I_2) to form zinc iodide leaving no excess of zinc or iodine. It is correct to say

- A. there are 127/25.4 mol of I atoms in 25.40 g of iodine
- **B.** the formula of zinc iodide is ZnI
- C. zinc and iodine react in a mole ratio of 6.53 : 25.40
- **D.** the mass of zinc iodide formed in this experiment would be 31.93 g

Question 20

Which substance is expected to have the **lowest** boiling point?

- **A.** CH₄
- **B.** C₂H₄
- C. CHCl₃
- **D.** CH₃OCH₃

END OF SECTION A

SECTION B – Short answer questions

Instructions for Section B

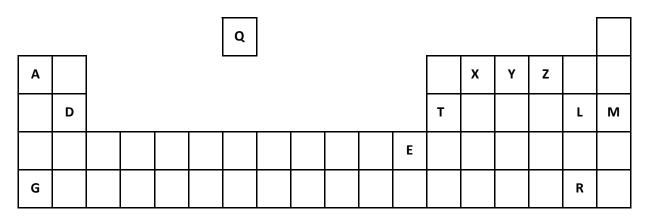
Answer all questions in the spaces provided.

To obtain full marks for your responses you should

- give simplified answers with an appropriate number of significant figures for all numerical questions; unsimplified answers will not be given full marks.
- show all working in your answers to numerical questions. No credit will be given for an incorrect answer unless it is accompanied by details of the working.
- make sure chemical equations are balanced and that the formulas for individual substances include an indication of state; for example, H₂(g); NaCl(s)

Name of compound	Formula of compound
calcium nitride	
sodium sulfate	
	Cu ₂ CO ₃
	Al(NO ₃) ₃
	CH ₂ CHCH ₂ CH ₃
	CH ₃ OH
butanoic acid	semi-structural formula required
	CH ₃ CH ₂ CHClCH ₃

Question 1 Complete the following table.


Total 8 marks

b.

c.

Question 2

The diagram below represents the Periodic Table with a selection of elements represented by letters. Note: these letters are **<u>not</u>** the actual symbols of these elements.

a. Selecting only from the element symbols labelled on this Periodic Table, write the letter (A, D, E, G, L, M, Q, R, T, X, Y or Z) corresponding to the element that:

i. is a n	non-metal with five electrons in its outershell	
ii. is in	n Group II	
iii. is a ti	transition element with three fully occupied shells	
iv. has the	the lowest electronegativity	
v. is in 1	Period 2 and has a total of three electrons	
	ns an ionic compound with chlorine where the ion ne element has a +3 charge	
	ns molecules containing one atom of the element our atoms of element Q	
		7 marks
Atoms of formed	f two elements react to form a compound. Give the chemical forn	nula of the compound
i. using the	he elements A and L.	
ii. using	g the elements Z and T.	2 marks
Give the e	electron shell arrangement for	
i. an ate	tom of element X	
ii. the ca	cation formed from element D	
		2 marks

- marks

Total 11 marks

a. A student adds an iodine (I₂) crystal to each of two test tubes. One test tube contains 10 mL of water and the other 10 mL of hexane. Predict in which solvent the iodine will be most soluble. Explain your selection.

3 marks

b. Na₂S and H₂S have quite different physical properties.

i. State two physical properties of each substance.

ii. Clearly describe both the **structure** and **bonding** in each substance and account for the difference in their physical properties.

6 marks

Total 9 marks

A group of students set out to determine experimentally the number of atoms in one mole of a metal. They take a small cube made of iron and weigh it. It was found to have a mass of 14.90 g.

By using displacement of water in a 25.0 mL measuring cylinder, the students were able to establish that the cube had a volume of 2.0 mL (cm^3).

They looked up the metallic radius of an iron atom which was found to be 124 pm.

 $(1 \text{ pm} = 10^{-12} \text{ m} = 10^{-10} \text{ cm})$

a. Calculate the amount, in mol, of metal used to 3 significant figures.

1 mark

b. Calculate the volume, in cm³, occupied by each metal atom in the sample using the formula

V =
$$\frac{4\pi r^3}{3}$$
 (1 pm = 10⁻¹² m = 10⁻¹⁰ cm)

1 mark

c. Assume that the metal atoms are packed with no spaces in between. Use the volume of the metal sample, as measured by the displaced water, and the volume of each metal atom, to calculate the number of metal atoms in the sample.

1 mark

d. Calculate the number of metal atoms that would be present in one mole of the metal atoms based on the calculation in **c**. This is equal to Avogadro's number.

1 mark

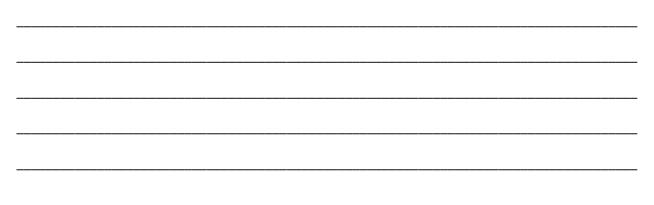
e. In your calculation you assumed that the metal atoms are packed with no spaces between them. How does this assumption affect the result?

- **f.** Assume that the metal atoms actually occupy 65% of the volume of the metal. Recalculate the value for Avogadro's number.
- g. Apart from the assumption in f, what is the largest source of error in this experiment?
- **h.** If another metal was used instead of iron, would you expect the result to be different? Explain your answer.

1 mark

1 mark

1 mark


i. Write a concise conclusion for the experiment.

1 mark

Total 9 marks

Question 5

Aspirin is a drug used extensively for the relief of pain in humans. Chemical analysis of an aspirin tablet determined that it was composed of 57.5 % carbon, 37.8 % oxygen and the remainder hydrogen. Calculate the empirical formula of aspirin.

3 marks

Magnesium is often used to alloy with another metal to improve its properties for a given application. When 2.00 g of such an alloy was treated with hydrochloric acid, HCl(aq), exactly 5.00×10^{-3} mol of hydrochloric acid was required to react with the magnesium.

a. The products of this reaction are hydrogen gas and magnesium chloride solution. Write the overall, balanced equation for the reaction of the magnesium with the acid.

		2 marks
b.	Determine the amount, in mol, of magnesium that reacted.	
		1 mark
c.	Determine the mass, in g, of magnesium that reacted.	
		1 mark
d.	What percentage by mass of magnesium was present in the sample?	

1 mark

Total 5 marks

a. Draw a structural formula (showing all lone electron pairs on the central atom) for each of the following molecules and state the shape of the molecule.

Molecule	Structural formula	Shape	
N_2			
CCl ₄			
SF ₂			

6 marks

b. For the three molecules indicated, state whether they have high polarity, low polarity or are non-polar. Briefly justify your response.

N ₂	 	 	
CCl ₄			
SF ₂	 		

3 marks

Total 9 marks

A freshly cut piece of potassium burns in a gas jar containing chlorine gas. A white smoke consisting of potassium chloride is formed and deposited in the gas jar.

- **a.** Write a balanced equation for the reaction between solid potassium and chlorine gas.
- **b.** Write the subshell electron configurations for potassium and chlorine atoms **after the reaction**.

2 marks

2 marks

c. Explain why the melting point of the potassium chloride formed is much higher than that of solid chlorine.

2 marks

d. Write the subshell electron configuration of an excited potassium atom.

1 mark

Total 7 marks

The table provides formulae of some hydrocarbons.

Compound	Formula
A	CH ₄
В	C ₂ H ₂
С	C ₂ H ₄
D	C ₂ H ₆
Е	C_3H_4
F	C ₃ H ₆
G	C ₃ H ₈
Н	C_4H_6
Ι	C_4H_8
J	C ₄ H ₁₀

a.	i.	List the letters of the members of this series that belong to the alkanes.	
----	----	--	--

ii. Give the general formula of this series.

3 marks

- **b. i.** Select a compound with **3 carbon atoms** and a double bond from the table. Indicate the letter corresponding to this compound in the box provided.
 - **ii.** These compounds readily undergo polymerisation reactions. Write a chemical equation to illustrate the polymerisation reaction of your selected compound from part **i**.

iii. Name the organic product of this reaction.

3 marks

Total 6 marks

15