# Solutions to the practice test Chemistry Unit 2

Scroll down

| Question | Answer | Question | Answer | Question | Answer |
|----------|--------|----------|--------|----------|--------|
| 1        | С      | 9        | D      | 17       | D      |
| 2        | В      | 10       | Α      | 18       | В      |
| 3        | D      | 11       | С      | 19       | Α      |
| 4        | Α      | 12       | D      | 20       | Α      |
| 5        | Α      | 13       | B      | 21       | Α      |
| 6        | D      | 14       | С      | 22       | В      |
| 7        | D      | 15       | D      | 23       | С      |
| 8        | Α      | 16       | В      | 24       | Α      |
|          |        |          |        | 25       | D      |

#### **SECTION A**

1) A 4.304 g sample of a hydrocarbon gas occupied a volume of 0.158 L at 154.1 kPa and 27.0 °C.

Given that the substance was a gas at the above temperature and pressure, calculate the moles of hydrocarbon gas present in the 4.304 g sample.

PV=nRT

PV/(RT) = n V = 0.158 L P = 154.4 kPa T = 27 +273 = 300 K => n = 154.1 X 0.158/(8.31 X 300) => 0.0098 = n

In g.mol<sup>-1</sup>, calculate the molar mass of the hydrocarbon.

```
Mass = mol X Fm
Fm = mass/mol
=> Fm =4.304/ 0.0438
=> Fm = 98.3
```

What temperature, in Celsius, is required for 0.374 g of the above gas to occupy a volume of 2.26 L at a pressure of 1.5 atm?

PV =nRT => T = PV/nR n = 0.374/98.3 =0.0038 P = 1.5 X 101.3 = 151.95 V = 2.26 L => T = 151.95 X 2.26 /( 0.0038 X 8.31) =10875 K = 10,875 -273 = 10,602 Briefly explain the equation  $P_1 V_1 = P_2 V_2$ .

# At constant temperature and mol of gas the p and V are inversely related. As P increases V decreases so the product of the two is constant.

# **Question 2**

 $Octane(C_8H_{18})$  is an ingredient of car fuel. It is mixed with oxygen and then burnt to produce carbon dioxide and water vapour.

(a) Write a balanced chemical equation for the combustion of octane.

# $2C_8H_{18}(g) + 25O_2(g) => 18H_2O(g) + 16CO_2(g)$

(b) What mass of carbon dioxide is produced if 30.0 g of octane is mixed with 30.0 g of oxygen gas?

mol of  $O_2 = 30/32 = 0.94$ mol of octane= 30/114 = 0.26

For 0.29 mol of octane we need mol of oxygen equivalent to (25/2) X 0.26 = 3.25.

But we only have 0.94 mol of oxygen so oxygen is the limiting reagent.

Hence mol of carbon dioxide produced is  $(16/25) \times 0.94 = 0.61$ Mass of carbon dioxide = 0.61  $\times 44 = 26.8$ 

### Question 3

*(i)* Balance the following half-equations and identify each as either an oxidation or a *reduction reaction.* 

 $\begin{array}{ll} H_2O_2(aq) & \rightarrow & H_2O(l) \\ Balance for oxygen by adding water to the left hand side \\ H_2O_2(aq) & \rightarrow & 2 H_2O(l) \\ Balance for hydrogen by adding H^+ to the left hand side \\ H_2O_2(aq) & + 2H^+(aq) & \rightarrow & 2 H_2O(l) \\ Balance for charge by adding electrons to the left hand side \\ H_2O_2(aq) & + 2H^+(aq) + 2e & \rightarrow & 2 H_2O(l) \ (reduction reaction, electrons are used) \end{array}$ 

- (ii)  $Cl_2(g) + 2e \rightarrow 2C\Gamma(aq)$  (also a reduction reaction, electrons are used)
- (a) Assign oxidation numbers to the underlined element in each of the following molecules or ions.
  - (i)  $\underline{Cr}_2O_7^{-2}$  (+6)
  - (ii)  $C\underline{H}_4$  (+1)
  - (iii) <u>Mn</u> $O_7^-$  (+13)

(b) Consider the following redox reaction.

$$Cr_2O_7^{-2}(aq) + Cu(s) \rightarrow Cr^{3+}(aq) + Cu^{2+}(s) + H_2O(l)$$

Write balanced half-equations for

The reduction process  $Cr_2O_7^{-2}(aq) => Cr^{3+}(aq)$   $Cr_2O_7^{-2}(aq) => 2Cr^{3+}(aq)$   $Cr_2O_7^{-2}(aq) => 2Cr^{3+}(aq) + 7H_2O(l)$   $Cr_2O_7^{-2}(aq) + 14H^+ => 2Cr^{3+}(aq) + 7H_2O(l)$  $Cr_2O_7^{-2}(aq) + 14H^+ + 6e => 2Cr^{3+}(aq) + 7H_2O(l)$ 

The oxidation process

$$Cu(s) => Cu^{2+} + 2e$$

c) From these half-equations write the balanced overall equation,

$$Cr_2O_7^{-2}(aq) + 14H^+ + 6e \implies 2Cr^{3+}(aq) + 7H_2O(l)$$

$$(Cu(s) \implies Cu^{2+} + 2e) \times 3$$

$$= Cr_2O_7^{-2}(aq) + 14H^+ + Cu(s) \implies 2Cr^{3+}(aq) + 7H_2O(l) + Cu^{2+}(aq)$$

d) determine which chemical species is the reductant. **Cu(s)** 

#### **Question 4**

+

A solution of aqueous calcium hydroxide  $(Ca(OH)_2)$  was made by dissolving 0.02 mol of the alkali in water. This resulted in a 370 mL solution.

(a) Write a balanced ionic equation to show that calcium hydroxide is a strong base.

 $Ca(OH)_2(s) => Ca^{2+}(aq) + 2OH(aq)$ 

- (b) Calculate the molar concentration, in mol.L<sup>-1</sup>, of the solution? concentration = mol/Vol(L) = 0.02/0.37 = 0.054 M
- (c) Calculate the  $[H_3O^+]$  in the sodium hydroxide solution in mol.L<sup>-1</sup>.

If  $[Ca(OH)_2] = 0.054$  the  $[OH^-] = 0.108$   $[H_3O^+][OH^-] = 10^{-14}$   $[OH^-] = 0.108 M = 10^{-0.97}$   $=> [H_3O^+] = 10^{-14}/10^{-0.97}$  $=> [H_3O^+] = 10^{-13.03}$ 

(d) Calculate the pH of the resultant solution. 13

### **Question 5**

Complete (a) to (c) below using the Brønsted-Lowry theory of acids and bases.

(a) i) Phosphoric acid,  $H_3PO_4$ , is a **strong acid**. Write appropriate, balanced chemical equations to show complete and successive ionisation of this acid in water.

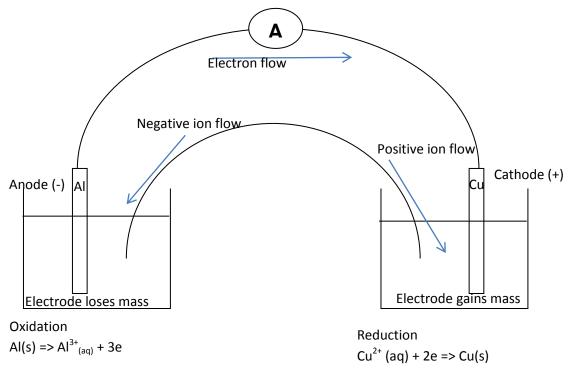
a)  $H_3PO_4(aq) + H_2O(l) => H_3O^+(aq) + H_2PO_4^-(aq)$ 

b)  $H_2PO_4(aq) + H_2O(l) => H_3O^+(aq) + HPO_4^{-2}(aq)$ 

c)  $HPO_4^{-2}(aq) + H_2O(l) => H_3O^+(aq) + PO_4^{-3}(aq)$ 

ii) Indicate which reaction, from the ones above, is least likely to proceed to the right and give an explanation?

# Reaction c) because $HPO_4^{-2}$ is a very weak acid and will not react to any great extent with the water.


(b) In water, the carbonate ion,  $CO_3^{2^2}$ , is a **weak base**. Write an appropriate, balanced chemical equation for the behaviour of this base in aqueous solution.

 $CO_3^{2}(aq) + H_2O(l) => HCO_3^{-}(aq) + OH(aq)$ 

- (c) The hydrogen sulfate ion, HSO<sub>4</sub><sup>-</sup>, is **amphiprotic**. Give two balanced chemical equations that demonstrate the amphiprotic nature of this ion.
  - a) As an acid  $HSO_4^-(aq) + H_2O(l) => SO_4^{-2}(aq) + H_3O^+(aq)$
  - b) As a base  $HSO_4^-(aq) + H_2O(l) => H_2SO_4(aq) + OH(aq)$

### **Question 6**

- a) On the below diagram of an electrochemical cell clearly indicate the
  - anode and its polarity
  - cathode and its polarity
  - direction of electron flow
  - direction of negative ion flow
  - direction of positive ion flow
  - the electrode gaining mass
  - the electrode losing mass



Overall 2AI(s) +  $3Cu^{2+}$  (aq) =>  $2AI^{3+}_{(aq)}$  + 3Cu(s)

# Question 7

A student mixed 20.0 mL of 0.010 M sodium carbonate ( $Na_2CO_3$ ), with 60.0 mL of 0.010 M hydrochloric acid, HCl. The mixture was allowed to react completely.

(a) Write a balanced equation for the reaction between calcium hydroxide and hydrochloric acid.

# Na2CO3(aq) + 2HCl (aq) => CO2(g) + H2O(l) + 2NaCl(aq)

(b) Calculate the number of moles of  $Na_2CO_3$  in the 20.0 mL sample.

### Mol =Concentration X vol (L) = 0.02 X 0.01 = 0.0002

(c) Calculate the number of moles of HCl in the 60 mL sample.

Mol =Concentration X vol (L) = 0.06 X 0.01 = 0.0006

(d) At the completion of the reaction, which reactant is in excess and by how much in grams?

### HCl by 0.0002 mol => 0.0002 X 36.5 = 0.0073 grams

### **Question 8**

A pure sample of a gas has a density of 2.00gL<sup>-</sup> at 25.0 °C and 1.05 atm pressure.

a) Calculate its molar mas in g/mol

PV =nRT => PV = (m/M)RT => PM = (m/V)RT => PM = d RT => M =dRT/P => M = 2.00X 8.31 X 298 /106.4 = 46.5

b) A student is told that it is a dioxide. Which is the most likely gas? *NO*<sub>2</sub> *with a molar mass of 46 it is the closest*.