3/4 solutions 2013

2013 UNIT 3/4 EXAM SOLUTIONS

Penalties : the usual ones!	* max ^m 1 mark off if incorrect numbers of significant figures are given
	* max ^m 1 mark off if symbols of state are omitted
	* 1 mark off each time a unit is omitted from answer that requires a unit

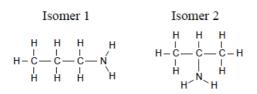
SECTION A	[30 ×]	1 = 30]							
1. D	2. C	3. A	4. D	5. D	6. B	7. A	8. D	9. C	10. A
11. A	12. D	13. D	14. D	15. B	16. A	17. B	18. C	19. C	20. D
21. B	22. C	23. A	24. B	25. C	26. B	27. A	28. C	29. B	30. A

SECTION B [total = **95**] * = 1 mark

Question 1 (9 marks)

a) Step 3: $NH_3(g) + HCl(aq) \rightarrow NH_4^+(aq) + Cl^-(aq) *$ Or $NH_3(g) + H^+(aq) \rightarrow NH_4^+(aq)$ Step 4: $HCl(aq) + NaOH(aq) \rightarrow NaCl(aq) + H_2O(l) *$

Or $H^+(aq) + OH^-(aq) \rightarrow H_2O(1)$

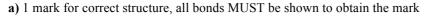

- b) n(HCl) reacted with $NH_3(g) = n(HCl)$ supplied n(HCl) in excess = n(HCl) supplied $- n(NaOH) = 0.100 \times 100 \times 10^{-3} - 0.200 \times 31.4 \times 10^{-3} *$ = 0.0100 - 0.00628= 0.00372 mol * (3 sig fig)
- c) n(N) in sample = $n(NH_3)$ produced = n(HCl) reacting with $NH_3 = 0.00372$ mol m(N) in sample = $0.00372 \times 14.0 = 0.0521$ g *
- d) % N = $[m(N) / m(sample)] \times 100 = (0.052 / 5.152) \times 100$ = 1.01 % * (3 sig figs)
- e) $K_a = 5.8 \times 10^{-10}$ Data Book Table 12 $K_a = [B(OH)_4][H^+] / [H_3BO_3] = 5.8 \times 10^{-10} = [H^+]^2 / 0.647$ $[H^+]^2 = 5.8 \times 10^{-10} \times 0.647 * = [H^+] = \sqrt{(5.8 \times 10^{-10} \times 0.647)} = 1.94 \times 10^{-5} \text{ M} *$ $pH = -\log_{10}(1.94 \times 10^{-5}) = 4.7 * (2 \text{ sig fig})$

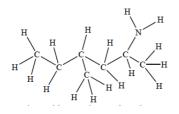
Question 2 (8 marks)

- a) The identity of each peak could be established by *running a sample of each alkanol* through the column and *noting the retention time*. *
- **b)** 1 mark for recognising the overlap of ethanol and 2-methylpropanol peaks, that could create problems if 2-methylpropanol is in wine sample
- c) retention time around 7.2.* 1-pentanol is the next alkanol in the homologous series * and the retention time seems to be increasing by a little over 1 with each member of the
 - 1 mark for nominating a retention time around 7 (should be between 7 and 7.5)
 - 1 mark for linking the retention time to the position of the alkanol in the homologous series
- d) 1-butanol and 2-methylpropanol are structural isomers * but their retention times are quite different.* This suggests that this technique might have the potential to separate structural isomers.
- e) If the concentration is doubled, the <u>area under the peak</u> (peak height is not sufficient) should be doubled.*
- f) At a higher temperature, the retention times of each alkanol should be shorter.* The order of peaks will be the same.

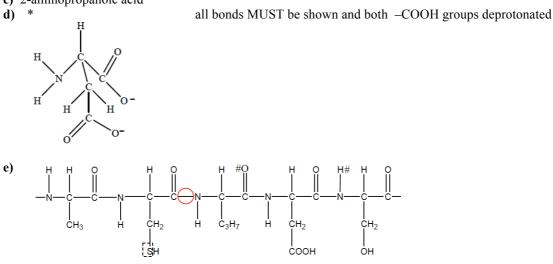
Question 3 (9 marks)

- a) (i) Mass of hydrogen = 2.800 1.710 0.664 = 0.426 g* (ii) EF = $\frac{1.71}{12} \cdot \frac{0.664}{14} \cdot \frac{0.426}{1} = 0.142 \cdot 0.0474 \cdot 0.426 = 3 \cdot 1 \cdot 9 *$ EF = C₃H₉N *
- **b)** (i) The base peak has a value of 29 *
 - (ii) The parent molecular ion has a mass of 59. This matches the empirical formula of C₃H₉N. Therefore, the empirical formula and the molecular formula are both C₃H₉N.*

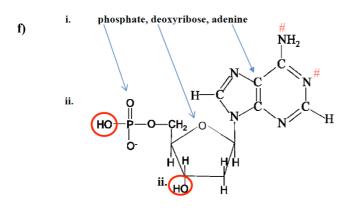



Isomer 1:1-aminopropane (or propan-1-amine)*Isomer 2:2-aminopropane (or propan-2-amine)*1 mark for each structure with its correct name.

c) The molecule is 2-aminopropane. *


It has <u>three</u> <u>different</u> hydrogen environments* in its structure and this matches the NMR shown. 1-aminopropane would have <u>four</u> different hydrogen environments. (The NMR spectrum is incorrect as the triplet should be a doublet. Assigning the peaks was not part of the answer)

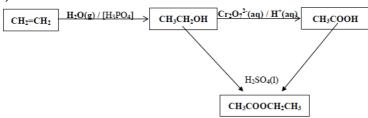
Question 4 (14 marks)



- b) Amino acids contain a carboxyl –COOH functional group as well as an amino group. DMMA molecules do not have carboxyl groups. *
- c) 2-aminopropanoic acid *

i. * for any C-N bond. (the **bond** not the entire peptide group needed to be circled) ii. * for an 'O' on one peptide group AND an 'H' on a <u>different</u> peptide group. iii. *for the 'S' atom.

Names of all species were available from the data booklet


- i ** for all three correct, [* for two correct]
- ii. * for both 'OH' groups circled. Also accept POOH.
- iii. * for both the N and the NH₂ on the right hand side of the nitrogen base (adenine). No marks if the H on the C-H is asterisked.
- **g)** Adenine-Thymine (A-T) pairs have only two sites for hydrogen bonding. * The *greater* the proportion of C-G (cytosine-guanine) base pairs, the *stronger* the attraction between the strands.

Question 5 (13 marks)

a) The two peaks are in the absorption band 1670-1750 cm⁻¹ (Data Book) and are caused by the **two** C=O groups * in the molecule. The peaks are centered at slightly different wavenumbers because of the different bonding environments in the caffeine molecule; one C=O is between two N atoms whilst the other C=O is between one C and one N atom. *

b) There are eight peaks and there are 8 '<u>different'</u> carbon atoms * in the caffeine molecule. Each C atom has a <u>different</u> bonding environment (looking through the whole molecule) *

Two marks ****** for the four correct <u>semi-structural</u> formulae; one mark if two or three correct.

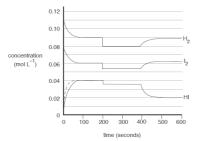
One mark * for $H_2O(g) / [H_3PO_4]$ (H₂O has to be (g) because it is steam) One mark * $Cr_2O_7^{2-}(aq) / H^+(aq)$ (no mark if **not** acidic conditions) One mark * $H_2SO_4(l)$ (no mark if no or aq state)

- f) i. Because the forward reaction is endothermic, the yield of ethyl ethanoate will be increased. *

The higher temperature will increase the rate of reaction. *

 ii. Ethanol is volatile and very flammable and should not be used near a naked flame. There would be a high risk of explosion. * (Ethanoic acid is also flammable)

Question 6 (18 marks)


a) The radioactive hydrogen will participate in the equilibrium, i.e. it will react with iodine at the same rate that HI will be broken down.*
 Radioactive HI should be detected as the forward and reverse reactions will continue even though there is no evident concentration change.*

b) K =
$$[HI]^2 / [H_2] x [I_2] * = (0.04)^2 / (0.09) x (0.06) * = 0.3* (1SF)$$

- c) As the gaseous concentrations decreased, the volume of the equilibrium container was increased. * The concentration of H₂ decreased from 0.090 M to 0.080 M, so the volume was increased by a factor of 9/8. * (magnitude has to be given to obtain full mark)
- d) i. lower *
 - ii. The concentrations of the reactants increase and the concentration of the product decreases. *

In the concentration fraction, the numerator is smaller and the denominator is larger, resulting in a smaller value of \mathbf{K} .

e) Drawing on graph should show equilibrium concentration of 0.040 M being reached earlier.

f) i. $\Delta H = \Delta H_1 + \Delta H_2 = -180 + 66 = -114 \text{ kJ mol}^{-1}$

ii.
$$K = [NO_2]^2 / [NO]^2 x [O_2] *$$

iii. The equilibrium constant for the reaction can be obtained from the equilibrium constants for other

two reactions.

$$N_2(g) + O_2(g) \rightleftharpoons 2NO(g) \qquad K_1 = 6.7 \times 10^{-10}$$

 $N_2(g) + 2O_2(g) \rightleftharpoons 2NO_2(g) \qquad K_2 = 3.1 \times 10^{-9} M^{-1}$
 $\frac{[NO]^2}{[N_2][O_2]} = 6.7 \times 10^{-10}$
 $\frac{[NO_2]^2}{[N_2][O_2]^2} = 3.1 \times 10^{-9}$
 $K = \frac{[NO_2]^2}{[NO]^2[O_2]} = \frac{[NO_2]^2}{[N_2][O_2]^2} / \frac{[NO]^2}{[N_2][O_2]} (1 \text{ mark})$
 $K = \frac{[NO_2]^2}{[NO]^2[O_2]} = 3.1 \times 10^{-9} / 6.7 \times 10^{-10} = 4.6 M^1 (1 \text{ mark})$

Alternative solution:

The chemical equation for the required reaction is: 2NO(-) + O(-) = 2NO(-)

 $2NO(g) + O_2(g) \rightleftharpoons 2NO_2(g)$

Since the starting material in this reaction is nitrogen(II) oxide then the chemical equation and equilibrium constant for the decomposition of nitrogen(II) oxide into nitrogen and oxygen will be

$$2NO(g) \rightleftharpoons N_2(g) + O_2(g) \qquad K_1 = 1/6.7 \times 10^{-10}$$
$$N_2(g) + 2O_2(g) \rightleftharpoons 2NO_2(g) \qquad K_2 = 3.1 \times 10^{-9} \text{ M}^{-1}$$

The equilibrium constant for this reaction will be the product of the two equilibrium constants, K_1^* and K_2 above.

$$K = \frac{[NO_2]^2}{[NO]^2[O_2]} = 3.1 \times 10^{-9} \times (1/6.7 \times 10^{-10}) = 4.6 \text{ M}^{-1}$$

- iv. The rates of the two reactions would be expected to be slow because both reactions involve breaking the nitrogen-nitrogen triple bond ¹/₂* which would require a large amount of energy ¹/₂* Therefore the activation energies for these reactions would be large.
- v. 1 mark for correct energy level of reactants and product (reactants higher energy value than products b/c exothermic reaction)
 - $^{1}\!\!/_{2}*$ correct labelling of E_A (forward and backward reaction)

Consequential marks possible if ΔH in f) was determined as positive.

Question 7 (6 marks)

- a) The volume of hydrogen gas is doubled so the mass of <u>magnesium must have been doubled</u>. * (An increase in acid concentration, or a temperature rise are not correct responses.)
- **b)** Possible changes include:
 - decreasing the magnesium surface area by adding it as a ball *
 - reducing the volume of the acid *
 - reducing the concentration of acid *
 - adding less magnesium*
- c) change in mass of the reactor over time *
 - the change in pH of the solution over time*

Question 8 (11 marks)

- a) biodiesel structural formula: (not drawn here due to space...) $C_{17}H_{35}COOCH_3 *$ (all bonds need to be shown to obtain full marks, lone pairs not necessary)
- **b)** ester linkage *
- c) $2C_{17}H_{35}COOCH_3(s) + 55O_2(g) \rightarrow 38CO_2(g) + 38H_2O(g) *$ (all needs to be correct to obtain the

1 mark)

- d) $E = c_f x \Delta T = 1175 x 15.83 = 18.60 kJ *$ $M_{biodiesel} = 298.5 g/mol$ $n_{biodiesel} = 0.50 / 298 = 0.00168 mol *$ 18.6 kJ per 0.00168 mol therefore $\Delta H_c = -1.1 x 10^4 kJ/mol ** (-1 mark if not a <u>negative</u> value)$
- e) ΔH_c (butane) from the data booklet = -2874kJ/mol n(butane) = $10g / 58gmol^{-1} = 0.17 mol *$ Energy released: E = 4.9 x 10^2 kJ* (energy value has to be positive!)
- e) Energy released by 10g butane = $4.9 \times 10^2 \text{ kJ}$ Energy released by 10g biodiesel = $3.7 \times 10^2 \text{ kJ}$ Therefore the energy released by the biodiesel is slightly less than butane*

f) biodiesel is a solid so easier to transport *

Question 9 (9 marks)

Note: The electrodes in the diagram were NOT labelled with A and B. I went through all the rooms and told students to label them so answer **a**) and **b**) could be the other way around but have to be correct and written as below:

- a) $Al(s) \rightarrow Al^{3+}(aq) + 3e^{-*}$
- **b)** $O_2(g) + 2H_2O(l) + 4e^- \rightarrow 4OH^-(aq) *$
- c) $1s^2 2s^2 2p^6 3s^2 3p^1 *$
- d) Anode. Oxidation (loss of electrons) occurs at the anode*
- e) Electrical energy *
- f) No harmful emissions *
- g) Does not have a continuous supply of reactants $\frac{1}{2}*$ and Al is not considered a fuel $\frac{1}{2}*$
- h) Advantage: one of the following: *
 - higher efficiency, continual supply of energy, long lasting, not polluting (rechargeable is incorrect)

Disadvantage: one of the following *

- very expensive, needs continual fuel addition, high temperature etc