3/4 solutions 2015

2015 UNIT 3/4 Trial EXAM SOLUTIONS

Penalties : the usual ones!	* max ^m 1 mark off if incorrect numbers of significant figures are given
	* max ^m 1 mark off if symbols of state are omitted
	* 1 mark off each time a unit is omitted from answer that requires a unit

SECTION A $[30 \times 1 = 30]$

1. D	2. D	3. A	4. C	5. B	6. D	7. C	8. A	9. D	10. A
11. B	12. C	13. B	14. A	15. B	16. C	17. D	18. B	19. A	20 B.
21. A	22. A	23. D	24. C	25. A	26. D	27. B	28. C	29. D	30. B

SECTION B [total = 100 marks] * = 1 mark

Question 1 (10 marks)

a. i.
$$K = [CO_2]x[H_2]^4 / [CH_4]x[H_2O]^2$$

ii. * = 1 mark (3 x 1 = **3 marks**)

	CH ₄	2H ₂ O	CO ₂	4H ₂
initial	1	1.4	0	0
change	1-0.22	1.4 - 0.44	0.22	0.88*
equilibrium	0.78*	0.96*		

iii. $K = [0.22] \times [0.88]^4 / [0.78] \times [0.96]^2 *$ = 0.78 x 0.5997 / 0.78 x 0.9216 = 0.132 / 0.719 = **0.18 M²** (2 sig fig) * 2 marks

b. $4 \ge 1 = 4$ mark

True (1 mol of methane will form 1 mol CO_2)
False (It is a reversible reaction)
False (In a reversible reaction, some reactant will

remain)

False (not all the methane will react)

Question 2 (8 marks)

a i. The value of ΔT will be lower than that of a well insulated calorimeter. **1** mark

ii. The calibration factor will be higher than that of a well-insulated calorimeter due to $c_f \sim 1 / \Delta T$.

1 mark

b.i.
$$HCl(aq) + NaOH(aq) \rightarrow NaCl(aq) + H_2O(l)$$
 1 mark

ii. The number of mole of HCl must be used as it is the limiting reagent in this experiment. 1 mark

c i. The value of ΔT will be lower than it should be as more water is being heated.1 markii. the value of ΔH will be lower than it should be as a result of the low ΔT 1 mark

1 mark

d.
$$n(\text{ethanol}) = \frac{0.552}{46} = 0.012 \text{ mol}$$

 $E = n \times 1364 = 0.012 \times 1364 = 16.368 \text{ kJ} = 16368 \text{ J}^{\ast}$
 $\Delta T = E/CF = 16368/684 = 23.9 \,^{0}\text{C}^{\ast}$ 2 marks
Question 3 (5 marks)
a. $n(\text{HCl})$ initially $= c \times V = 0.250 \times 100.0 \times 10^{-3} = 0.0250 \text{ mol}$ 1 mark
 $n(\text{HCl})$ unreacted $= n(\text{NaOH}) = c \times V = 0.375 \times 17.80 \times 10^{-3} = 0.006675 \text{ mol}$ 1 mark
 $n(\text{HCl})$ used in reaction $= n(\text{HCl})$ initially $- n(\text{HCl})$ unreacted

$$= 0.0250 - 0.006675 = 0.0183 \text{ mol}$$
 1 mark

b.]	For example: the grain may contain other basic substances that react with the HCl	1 mark
с.,	Ammonia is a volatile gas which may escape from the solution during titration. Reacting with excess HCl prevents this loss.	1 mark

Question 4 (11 marks)

mass ratio in 100 g of compound C : H : O = 41.4 g : 3.4 g : 55.2 g a.

mol ratio =
$$\left(\frac{41.4}{12}\right) : \left(\frac{3.4}{1.0}\right) : \left(\frac{55.2}{16}\right)$$

= 3.45 : 3.4 : 3.45
= 1 : 1 : 1

So the empirical formula is CHO.

b. The molecular ion has m/z of 116 and so $M(\text{compound}) = 116 \text{ g mol}^{-1}$. 1 mark M(CHO) = 29 and so there are $\frac{116}{29}$ units of CHO in the molecule. So the molecular formula is C₄H₄O₄. 1 mark

c i. X: O-H in acids (2500 to 3300 cm⁻¹) 1 mark

d)

$$n(\text{KOH}) = \frac{5.05}{56.1} = 0.090 \text{ mol}$$
 1 mark

$$n(\text{compound}) = 0.045 = \frac{1}{2} \times n(\text{KOH})$$

The compound can donate two protons per molecule and so each molecule has two acidic (carboxyl) groups.

2

1 mark

1 mark

2 marks 1 mark for showing all bonds 1 mark for showing C=C and -COOH groupings

There are two carbon environments shown on the ¹³C NMR spectrum:

- the peak at 165 ppm corresponds to –COOH in the compound 1 mark
- the peak at 130 ppm corresponds to -C=C- in the compound 1 mark

Question 5 (11 marks)

h i linoleic acid

a.	$n(\text{linoleic acid}) = \frac{m}{M} = \frac{15.89}{280.0} \text{ mol}$	1 mark

The formula $C_n H_{2n-3}$ indicates that linoleic acid contains two C=C bonds (or use the equation $C_{17}H_{31}COOH + 2H_2 \rightarrow C_{17}H_{35}COOH$).

So
$$n(H_2) = 2 \times n(\text{linoleic acid}) = 2 \times \frac{15.89}{280.0} \text{ mol}$$
 1 mark

$$V(H_2) = \frac{nRT}{P} = \frac{2 \times 15.89 \times 8.31 \times 323}{280.0 \times 1.2 \times 101.3} = 2.51 L$$
2 marks
1 mark for formula and unit conversions

1 mark for formula and unit conversions 1 mark for correct volume

1 mark

	1 mark
It has the <i>higher concentration</i> as it has the <i>larger area under the peak</i> - do not award marks if peak height is used to explain the higher concentration	1 mark
ii. stearic acid	1 mark

Both fatty acids are largely non-polar and will interact with the non-polar stationary phase via dispersion forces.

However, stearic acid was more adsorbed to the stationary phase (longer retention time) 1 mark Therefore bc it has stronger dispersion forces it would have a higher melting point, as a greater amount of energy is needed to disrupt the intermolecular bonding. 1 mark

c. The esters would be vaporise at lower temperature (*because the esters are more volatile than the carboxylic acids*) 1 mark

Question 6 (7 marks)

a. i. ether (or glycosidic) linkage1 markii. hydrolysis1 mark

The microbes do not use oxygen (anaerobic) to produce the alkanols and are unable to function in an atmosphere of oxygen. 1 mark

I would also accept oxidation to carboxylic acid???

b. i.
$$E = C.F. \times \Delta T = 3.49 \times 5.16 = 18.01 \text{ kJ}$$

 $n(\text{biobutanol}) = \frac{m}{M} = \frac{0.498}{74.0} = 0.006729 \text{ mol}$
energy released per mol = $\frac{18.01}{0.006729} = 2676 \text{ kJ} = 2.68 \times 10^3 \text{ kJ}$
ii. $C_4H_9OH(1) + 6O_2(g) \rightarrow 4CO_2(g) + 5H_2O(g) * \Delta H = -2.68 \text{ MJ mol}^{-1}$
2 marks

 $C_4H_9OH(1) + 6O_2(g) \rightarrow 4CO_2(g) + 5H_2O(g) * \Delta H = -2.68 \text{ MJ mol}^4$ 2 marks 1 mark for correctly balanced equation 1 mark for correct ΔH and sign

Question 7 (8 marks)

b.

In this cell, the

i. positive electrode will be $Fe^{3+}(aq)$ half cell electrode*

ii. $Fe^{3+}(aq) *$

iii. electrons will flow from beaker C to beaker B*

2 + 1 + 1 = 3 marks

- a. i. See diagram
 - ii. See diagram

2 + 1 = 3 marks

1 mark

1 mark

b. i.	$C_6H_{12}O_6(aq) \rightarrow 2CH_3CH_2OH(aq) + 2CO_2(g)$	1 mark
ii.	see diagram	2 marks

- iii. enzymes in yeast *act as a catalyst*
- iv. enzymes in yeast are heat sensitive. The active site is changed and their ability to function is destroyed
 1 mark

17 carbons plus the $-COOC_2H_5$

ii. the reactant is sourced from plant material, they are renewable and can be replenished as rapidly as they are used $n = \frac{100000}{284} = 352.1 mol$

$$nxM = 352.1 \times 312 = 110kg$$

iii. M(stearic acid) = M(C₁₇H₃₅COOH) = 12 x 17 + 35 + 12 + 32 + 1) = 284

 $n = \frac{100000}{284} = 352.1 mol *$ n(stearic acid) = n(biodiesel) = 352.1 mol

mass = $nxM = 352.1 \times 312 = 110kg *$

Question 9 (8 marks)

a. i. $Cr_2O_7^{2-}(aq) + 14H^+(aq) + 6e^- \rightarrow 2Cr^{3+}(aq) + 7H_2O(l)$ 2 marks Mg²⁺¹ mark for correctly bgtanced half equation MgF₂ 1/2 mark each for states and electrons on correct side ii. reduction 1 mark concentration, M 0.05 * 0.05 * 0.10 *

b. i. permanent colour change from orange to green

ii. ratio of Fe²⁺ : Cr₂O₇²⁻ (aq) = 6 : 1, therefore 6 x 5400 = 32400 mass = $n \times M = 0.1 \times 19 = 1.9g$ 1 mark

c. i. The original $Cr_2O_7^{2-}$ solution is orange. This means it absorbs blue light but reflects yellow and red. Hence the wavelength is set to a blue colour. 1.9 - 0.010 a 1 mark

ii. As the reaction proce**E00**, the absorption should decrease because the concentration of the Cr₂O₇²⁻ is 1 mark decreasing.

Question 10 (7 marks)

serine* ii.

carboxyl, hydroxyl, amine * iii.

Н н

2 marks

6

1 mark

1 + 1 + 1 = 3 marks

• the anode: $2Cl^{-}(l) \rightarrow Cl_{2}(g) + 2e^{-}$

н

7

Question 12 (8 marks)

a. i.
$$K_{a} = \frac{[CH_{3}COO^{-}][H_{3}O^{+}]}{[CH_{3}COOH]}$$
 1 mark

ii.
$$[H_3O^+] = 10^{-pH} = 10^{-3.38} = 4.17 \times 10^{-4} M$$
 1 mark

$$K_{\rm a} = 1.7 \times 10^{-5} = \frac{(4.17 \times 10^{-4} \times [\text{CH}_{3}\text{COO}^{-}])}{[\text{CH}_{3}\text{COOH}]}$$

% ionisation =
$$\frac{[CH_3COO^-]}{[CH_3COOH]} \times 100$$
 1 mark

$$= \frac{1.7 \times 10^{-5}}{4.17 \times 10^{-4}} \times 100 = 4.1\%$$
 1 mark

b.
$$[H_3O^+][OH^-] = 10^{-14} = 10^{-2.56} \times [OH^-]$$
 1 mark
 $[OH^-] = 3.63 \times 10^{-12} M$ 1 mark

c.
$$c_1 V_1 = c_2 V_2 = 10^{-2.00} \times 0.0100 = 10^{-2.37} \times V_2$$

 $V_2 = \frac{10^{-4}}{10^{-2.37}} = 2.34 \times 10^{-2} \text{ L} = 23.4 \text{ mL}$ 1 mark

Thus the volume of water added = 23.4 - 10.0 = 13.4 mL.

1 mark