CHEMISTRY

Units 3&4 - Written examination

2018 Trial Examination

SOLUTIONS

SECTION A – Multiple-choice questions (1 mark each)

Question 1

Answer: D

Explanation:

Biogas is formed in anaerobic conditions. A significant amount of CO₂ will be generated at the same time.

Question 2

Answer: C

Explanation:

The ratio of fuel to CO_2 is 1:4. This will match butane as its molecules have 4 carbon atoms that will form 4 molecules of CO_2 .

Question 3

Answer: C

Explanation:

$$V = \frac{nRT}{P} = \frac{2 \times 8.31 \times 308}{100} = 51 \text{ L}$$

© TSSM 2018

Page 1 of 13

Answer: A

Explanation:

octane: $10 \times 47.9 = 479 \text{ kJ}$ butane: $9 \times 49.7 = 447 \text{ kJ}$ methane: $8 \times 55.6 = 445 \text{ kJ}$ ethanol: $0.2 \times 1360 = 272 \text{ kJ}$

Question 5

Answer: A

Explanation:

The equation for the reaction is

```
Zn(s) + 2HCl(aq) \rightarrow ZnCl_2(aq) + H_2(g)
```

As the reaction proceeds, the amount of HCl left decreases. The pH will rise and approach 7 if the zinc is in excess.

Question 6

Answer: B

Explanation:

Butane. From the graph, the value of ΔH is -5 760 kJ mol⁻¹. Taking into account the balanced equation, this value will match that of butane in the Data book.

$$2C_4H_{10}(l) + 13O_2(g) \rightarrow 8CO_2(g) + 10H_2O(l)$$

Question 7

Answer: D

Explanation:

An increase in temperature will favour the forward reaction as it is endothermic. The removal of oxygen will favour the forward reaction replacing the oxygen. A decrease in volume will increase the concentration of all species. The system will oppose this by moving in the reverse direction but the concentration will remain greater than it was.

© TSSM 2018 Page 2 of 13

Answer: B

Explanation:

The value of K is relatively high. Such a high value will only be obtained if the concentration of HI is considerably greater than that of the reactants.

Question 9

Answer: B

Explanation:

The expression for K is $2SO_3(g) \rightleftharpoons 2SO_2(g) + O_2(g)$

Since the reverse reaction is asked for, the equation is $2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$

Question 10

Answer: C

Explanation:

Fe²⁺ is reduced to Fe, making it the oxidant. It oxidises lithium atoms to lithium ions.

Question 11

Answer: C

Explanation:

Metal A is lower on the E⁰ series than silver.

Metal A is lower on the E⁰ series than lead.

Metal A is higher on the E^0 series than aluminium. Metal A is lower on the E^0 series than nickel => Manganese

Question 12

Answer: A

Explanation:

In a hydrogen fuel cell, hydrogen reacts to form hydrogen ions. This is oxidation. The electrons released reduce oxygen gas to oxygen ions.

© TSSM 2018 Page 3 of 13

Answer: A

Explanation:

Oxidation occurs at the anode. The anode reaction is the oxidation of hydrogen atoms. This requires electrons and water is formed.

Question 14

Answer: D

Explanation:

The deposit at the cathode is of copper metal and the gas at the anode is oxygen gas (matching the electrolysis of aqueous CuCl₂

Question 15

Answer: C

Explanation:

$$n(Cu) = \frac{3.17}{63.5} = 0.050 \text{ mol}$$

 $n(Ag) = 2 = 0.05 \times 2 = 0.10 \text{ mol}$

$$mass = 0.10 \times 108 = 10.8 g$$

Question 16

Answer: B

Explanation:

Oxygen gas is formed from water at the positive electrode of both cells.

$$2H_2O(1) \rightarrow O_2(g) + 4H^+(aq) + 4e^-$$

 $n(O_2)$ in Cu cell = $\frac{1}{2}n(Cu) = 0.025$
 $n(O_2)$ in Ag cell = $\frac{1}{4}n(Cu) = 0.025$

Total
$$n(O_2) = 0.025 + 0.025 = 0.05 \text{ mol}$$

© TSSM 2018 Page 4 of 13

Answer: A

Explanation:

The half-equation for the permanganate ion is $MnO_4^-(aq) + 8H^+(aq) + 5e^- \rightarrow Mn^{2+}(aq) + 4H_2O(l)$ When this is compared to the $Fe^{2+}(aq) \rightarrow Fe^{3+}(aq) + e^-$ half-equation a ratio of 1:5 is evident.

Question 18

Answer: D

Explanation:

The two molecules in option D can be superimposed. A good check for geometric isomers is to look for a carbon atom having different groups on it.

Question 19

Answer: A

Explanation:

Molecule A is a tertiary alcohol. A tertiary alcohol will not be oxidised.

Question 20

Answer: B

Explanation:

The first molecule has a carbon-to-carbon double bond on the second carbon = but-2-ene The second molecule has an amine group on the second carbon The third molecule is an ester formed from ethanol and methanoic acid.

Question 21

Answer: B

Explanation:

The spectrum shows three different hydrogen environments, one a singlet due to the –OH, one a doublet from the two methyl groups and one a septet due to the six hydrogen atoms near the middle hydrogen atom.

© TSSM 2018 Page 5 of 13

Answer: D

Explanation:

There is a broad absorption around $3000~{\rm cm}^{-1}$ due to the –OH (acid) and an absorption at 1750 due to the –C=O

Question 23

Answer: C

Explanation:

The amino acids can be identified from the Data book as glutamic acid, lysine and serine.

Question 24

Answer: A

Explanation:

The molecule shown can be identified as lactose from the Data book. It can be hydrolysed to glucose and galactose.

Question 25

Answer: C

Explanation:

Basmati rice has a higher proportion of amylose than other rices. Amylose is less water soluble, and slower digesting, than amylopectin.

Question 26

Answer: B

Explanation:

Vitamin D has a low solubility in water. It can be stored in fat tissue for long periods.

© TSSM 2018 Page 6 of 13

2018 CHEM EXAM

Question 27

Answer: A

Explanation:

Arginine contains an amine group as part of its R group. This acts as a base in the same way that ammonia does.

Question 28

Answer: B

Explanation:

Oleic acid has a molar mass of 282 g mol⁻¹. The formula is in the Data book.

Question 29

Answer: D

Explanation:

$$E = 0.015 \times 1360 = 20.4 \text{ kJ}$$

 $CF = \frac{20.4}{12.4} = 1.60 \text{ kJ}^{0}\text{C}^{-1} = 1640 \text{ J}^{0}\text{C}^{-1}$

Question 30

Answer: B

Explanation:

$$E = 1640 \times 4.8 = 7870 \text{ J}$$

Heat of combustion = $\frac{7870}{1.4} = 5620 \text{ J g}^{-1}$

© TSSM 2018 Page 7 of 13

SECTION B – Short answer questions

An * *indicates the allocation of 1 mark*

Question 1 (9 marks)

- **a**. **i**. Choose from natural gas deposits, biogas generators, distillation of crude oil.
 - ii. $CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + 2H_2O(l)$
 - iii. $E = 120\ 000\ \text{x}\ 10^6\ \text{x}\ 55.6 = 1.2\ \text{x}\ 10^{11}\ \text{x}\ 55.6 = 6.67\ \text{x}\ 10^{12}\ \text{kJ}$

1 + 1 + 1 = 3 marks

- **b.** i. The burning gas releases energy. Hot air expands, acting to move the compressor and to turn a turbine to generate electricity.
 - ii. Two of: thermal energy gas to thermal energy steam. Thermal energy to mechanical energy. Mechanical energy to electrical energy

iii.
$$V = \frac{nRT}{P} = \frac{1 \times 8.31 \times 357}{100} ** = 29.7 L*$$

1 + 2 + 3 = 6 marks

Question 2

(14 marks)

a.

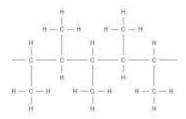
- **i.** 56 g mol⁻¹
- ii. C_4H_8
- iii. $C_3H_5^+$

iv.

Structure 1: but-2-ene

Structure 2: but-1-ene

1 + 1 + 1 + 2 = 5 marks


- **b. i.** 2 hydrogen enviroments
 - ii. Molecule is but-2-ene as it has two different H environments as shown on the diagram

$$H - C \longrightarrow C \longrightarrow C \longrightarrow H \longrightarrow H$$

1 + 2 = 3 marks

2018 CHEM EXAM

c.

1 mark

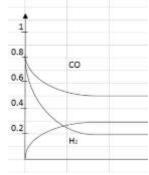
d. i. Geometric isomers have the same molecular formula but have a different spatial arrangement that prevents them being superimposed. In particular, geometric isomers are often formed by a lack of rotation around carbon-to-carbon double bonds.

ii.

Isomer 1: trans-but-2-ene

Isomer 2: cis but-2-ene

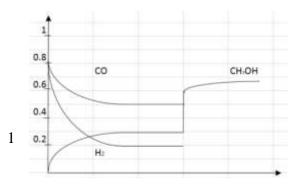
1 + 2 = 3 marks


e. i. Reddish bromine solution will go colourless when added to unsaturated organic compounds.

ii.
$$C_4H_8(l) + Br_2(l) \rightarrow C_4H_8Br_2(l)$$

1 + 1 = 2 marks

Question 3 (11 marks)


a. i.

ii.
$$K = \frac{[CH_3OH]}{[CO][H_2]^2} = \frac{0.3}{0.5 \times 0.2^2} = 15 \text{ M}^{-2}$$
 One mark each step in calculation

2 + 3 = 5 marks

b.

1 + 1 = 2 marks

- **c**. i. the value of *K* drops as the reaction is exothermic
 - ii. the amount of methanol drops as the back reaction is favoured

1 + 1 = 2 marks

d. i.
$$2CH_3OH(1) + 3O_2(g) \rightarrow 2CO_2(g) + 4H_2O(1)$$

ii. $E = 22.7 \times 1000000 = 2.27 \times 10^7 \text{ kJ}$

1 + 1 = 2 marks

Question 4 (6 marks)

- **a.** i. Lithium has a low mass and it is the strongest reductant of all.
 - ii. Lithium reacts violently with water or lithium batteries are dangerous when swallowed

2 + 1 = 3 marks

b. i. anode: Li
$$\rightarrow$$
 Li⁺ + e⁻ cathode: 2SOCl₂ + 4e⁻ \rightarrow 4Cl⁻ + SO₂ + S

ii. The cell produces 3.6 V and the value for the lithium half-cell is 3.04 therefore voltage will be -3.04 - -3.6 = +0.56 V

2 + 1 = 3 marks

Question 5 (11 marks)

a. i. Magnesium ions are stronger oxidants than potassium and sodium ions, therefore they react with the Cl⁻ ions. *

$$Cl_2(g) + 2e^- \rightarrow \underline{2Cl}(l)$$

 $\underline{Mg}^{2+}(l) + 2e^- \rightarrow Mg(l)$
 $Na^+(l) + e^- \rightarrow Na(l)$
 $K^+(l) + e^- \rightarrow K(l)$ * for evidence

ii. In an aqueous solution water will react before magnesium ions, producing hydrogen gas*

2 + 2 = 4 marks

b. Two reasons from: producing reactive magnesium and chlorine gases at close proximity, high temperature materials. High electrical currents.

2 marks

c. anode:
$$2Cl^{-}(l) \rightarrow Cl_{2}(g) + 2e^{-}$$
 cathode: $Mg^{2+} + 2e^{-} \rightarrow Mg(l)$

2 marks

© TSSM 2018 Page 10 of 13

2018 CHEM EXAM

d.
$$Q = It = 180\ 000 \times 24 \times 60 \times 60 = 1.56 \times 10^{10} \text{ C}$$

$$n(e) = \frac{1.56 \times 10^{10}}{96500} = 1.62 \times 10^{5}$$
$$n(Mg) = 8.06 \times 10^{4} \text{ mol}$$

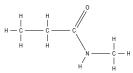
mass =
$$8.06 \times 10^4 \times 24.3 = 1960 \text{ kg}$$

3 marks

Question 6 (10 marks)

a. CH₃CH₂OCOCH₂CH₃

1 mark


ii.
$$C_6H_{12}O_6(aq) \rightarrow 2C_2H_6O(aq) + 2CO_2(g)$$

iii.

$$1+1+1=3$$
 marks

ii.

Н-О-Н

$$1 + 2 = 3 \text{ marks}$$

e.
$$n(NaOH) = 0.025 \times 0.5 = 0.0125 \text{ mol}$$

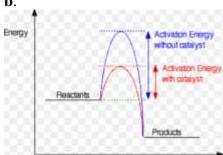
 $n(propanoic acid) = 0.0125 \text{ mol}$

$$c = \frac{n}{V} = \frac{0.0125}{0.005} = 2.5 \text{ M} *$$

3 marks

Question 7 (10 marks)

a. Oxidation half-equation:
$$H_2O_2(l)$$
 \rightarrow $2e^- + 2H^+(aq) + O_2(g)$


Reduction half-equation: $H_2O_2(l) + 2H^+(aq) + 2e^- \rightarrow 2H_2O(l)$

Overall equation: $2H_2O_2(l) \rightarrow 2H_2O(l) + O_2(g)$

$$-1 \text{ to } -2 \text{ (O}^{-1} \text{ to O}^{2-1})$$

1 + 1 + 1 = 4 marks

b.

2 marks

- c. i. MnO₂ will be more effective at 75 °C. *It is an inorganic catalyst that will not denature with heat like an enzyme will.*
 - Both catalysts provide an alternative reaction pathway with lower activation energy*. ii. Both catalysts should be unchanged in the reaction*.

2 + 2 = 4 marks

Ouestion 8 (13 marks)

- a. i. oleic acid
 - ii. ethanol

1 + 1 = 2 marks

- Melting point of this biodiesel molecule will be higher than that of petrodiesel (longer molecule, more dipoles.)
 - ii. Viscosity of this biodiesel molecule will be less than one formed from arachidic acid and the same alcohol. Its hydrocarbon chain is shorter and it has a carbon-to-carbon double bond that places a kink in the chain and limits tight packing.

1 + 2 = 3 marks

c. i.
$$3(C_{18}H_{34}O_2) + C_3H_8O_3 - 3H_2O = C_{57}H_{104}O_6$$

ii.
$$0.34 \times 37 = 12.6 \text{ kJ}$$

iii.
$$Q = 4.18 \times m \times \Delta T = 12600^*$$

 $\Delta T = 12600/(4.18 \times 150) = 20.1$ final T = 21.6 + 20.1 = 41.7 0 C*
 $2 + 1 + 2 = 5$ marks

- **d**. **i**. The carbon atom adjacent to the carbon-to-carbon double bond is a likely point of breakdown.
 - ii. Store in an airtight*, dark container away from light*.

1 + 2 = 3 marks

© TSSM 2018 Page 12 of 13

Question 9 (7 marks)

a. The structure is of amylopectin, a form of starch. It has α –glucose particles as the building blocks.* They are connected by glycosidic bonds. Every 20-24th glucose particle, there is a crosslink, also a glycosidic covalent bond*. (These are 1,6 linkages). The molecule is slightly soluble in water as it does not pack together as tightly as amylose or cellulose.* It is digested by humans through the use of enzymes. Higher GI than amylose. *

4 marks

b. amylase and maltase

2 marks

c. Amylopectin will hydrolyse fairly readily, releasing glucose quickly. It is the quick release of glucose that makes it high GI.

1 mark

Question 10 (9 marks)

a.
$$CH_3COOH(aq) + NaOH(aq) \rightarrow CH_3COONa(aq) + H_2O(l)$$
 1 mark

b. 4 marks: 1 mark for each box of the table

Issue	Why is it a problem?
The volumetric flask has not been used properly. It should be made up to the mark and not have 20 mL added to 230 mL.	20 mL added to 230 mL of water will not necessarily give 250 mL. Some liquids are miscible in each other. All concentration calculations will be subsequently affected.
Methyl red is not an appropriate indicator for a weak acid/ strong base titration.	The endpoint will occur earlier than it should, leading to a low result for the ethanoic acid calculation.

c. Run 1 titre is omitted as it is not concordant. Mean titre from other runs is 22.0 mL. *

$$n(NaOH) = 0.15 \times 0.022 = 0.0033 \text{ mol}$$

$$n(CH_3COOH) = 0.0033 \text{ mol}$$
 *

$$c(\text{diluted}) = \frac{0.0033}{0.02} = 0.165 \text{ M}$$

$$c(\text{ethanoic acid}) = \frac{0.165 \times 250}{20} = 2.06 \,\text{M}$$
 * 4 marks

© TSSM 2018 Page 13 of 13