Neap

Trial Examination 2020

VCE Chemistry Unit 3

Written Examination

Question and Answer Booklet

Reading time: 15 minutes Writing time: 1 hour 30 minutes

Student's Name:

Teacher's Name:

Structure of booklet

Section	Number of questions	Number of questions to be answered	Number of marks
A	20	20	20
В	6	6	55
			Total 75

Students are permitted to bring into the examination room: pens, pencils, highlighters, erasers, sharpeners, rulers and one scientific calculator.

Students are NOT permitted to bring into the examination room: blank sheets of paper and/or correction fluid/tape.

Materials supplied

Question and answer booklet of 18 pages.

Data booklet.

Answer sheet for multiple-choice questions.

Instructions

Please ensure that you write **your name** and your **teacher's name** in the space provided on this booklet and in the space provided on the answer sheet for multiple-choice questions.

Unless otherwise indicated, the diagrams in this booklet are **not** drawn to scale.

All written responses must be in English.

At the end of the examination

Place the answer sheet for multiple-choice questions inside the front cover of this booklet and hand them in.

Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic devices into the examination room.

Students are advised that this is a trial examination only and cannot in any way guarantee the content or the format of the 2020 VCE Chemistry Units 3&4 Written Examination.

Neap Education (Neap) Trial Exams are licensed to be photocopied or placed on the school intranet and used only within the confines of the school purchasing them, for the purpose of examining that school's students only. They may not be otherwise reproduced or distributed. The copyright of Neap Trial Exams remains with Neap. No Neap Trial Exam or any part thereof is to be issued or passed on by any person to any party inclusive of other schools, non-practising teachers, coaching colleges, tutors, parents, students, publishing agencies or websites without the express written consent of Neap.

SECTION A - MULTIPLE-CHOICE QUESTIONS

Instructions for Section A

Answer **all** questions in pencil on the answer sheet provided for multiple-choice questions.

Choose the response that is **correct** or that **best answers** the question.

A correct answer scores 1; an incorrect answer scores 0.

Marks will not be deducted for incorrect answers.

No marks will be given if more than one answer is completed for any question.

Unless otherwise indicated, the diagrams in this booklet are **not** drawn to scale.

Question 1

Le Chatelier's principle states that a change made to

- A. any chemical reaction will be completely opposed.
- **B.** any chemical reaction will be partially opposed.
- **C.** a system at equilibrium will be completely opposed.
- **D.** a system at equilibrium will be partially opposed.

Use the following information to answer Questions 2 and 3.

Carbon monoxide poisoning can lead to rapid death of a victim.

Question 2

Which one of the following situations is **most** likely to lead to carbon monoxide poisoning?

- A. mowing lawns on a hot, still day
- **B.** using an electrical motor without adequate ventilation
- C. running a combustion engine in a confined space
- **D.** burning fuel with an abundant supply of oxygen gas

Question 3

What is the result of the recommended treatment (administering pure oxygen) for carbon monoxide poisoning?

- A. Carbon monoxide is converted to carbon dioxide.
- **B.** The total mass of haemoglobin in the body increases.
- C. Oxygen-carrying molecules are made available.
- **D.** Carbon is removed from carbon monoxide, leaving only oxygen in the body.

Question 4

Which one of the following energy transformations does **not** occur in either an electrolytic cell or a galvanic cell?

- A. heat energy to electrical energy
- **B.** chemical energy to heat energy
- C. electrical energy to chemical energy
- **D.** chemical energy to electrical energy

Use the following information to answer Questions 5–7.

The diagram below shows the design of a rechargeable lead-acid battery.

Question 5

What feature does the lead-acid battery have in common with a primary galvanic cell?

- **A.** The products of the cell reaction remain in contact with the electrodes.
- B. Spontaneous redox reactions are used to generate electricity.
- C. The cathode is always the negative electrode of the cell.
- **D.** During discharge, oxidation occurs at the positive electrode.

Question 6

Suggested functions of the porous separator in a battery include the following:

- I It allows ions to pass through.
- II It provides a path for electrons to transfer.
- III It prevents the electrodes from coming into contact.

Which of these functions are correct of the separator in the lead-acid battery?

- A. I and II only
- **B.** II and III only
- **C.** I and III only
- **D.** I, II and III

Question 7

The electromotive force (emf) of the lead-acid battery is 12 V but the battery will need recharging after continued use.

Which electrode of the battery should be connected to the positive terminal of the power recharger, and what voltage must be applied in recharging?

	Electrode of battery connected to the positive terminal of the power recharger	Voltage applied in recharging
A.	positive	exactly 12 V
B.	negative	exactly 12 V
C.	positive	more than 12 V
D.	negative	more than 12 V

Question 8

A dilute solution of lithium iodide, LiI(aq), is electrolysed using carbon electrodes.

What product is likely to be formed at the anode?

- **A.** I₂
- **B.** Li
- C. OH
- **D.** O₂

Question 9

What is the maximum volume of carbon dioxide gas, measured at 110 kPa and 30°C, that could be produced by the complete combustion of 65.0 g of octane?

- **A.** 10.0 L
- **B.** 13.0 L
- **C.** 84.0 L
- **D.** 104 L

Question 10

When 500 g of pure water at 20° C is heated using the energy from the complete combustion of 2.0 g of ethanol, the maximum possible final temperature of the water would be

- **A.** 28°C
- **B.** 48°C
- **C.** 68°C
- **D.** 88°C

Question 11

Aluminium is produced industrially by the reduction of Al^{3+} ions in an electrolytic cell using a current of 35 000 A.

How many kilograms of aluminium could be produced per hour, assuming 100% efficiency?

- **A.** 11.8
- **B.** 35.3
- **C.** 106
- **D.** 183

Question 12

Features present in different electrochemical cells include:

- I catalytic electrodes
- II electrodes made from inert material
- III non-porous electrodes
- IV electrodes with a large surface area

Which of these features are likely to be present in the hydrogen-oxygen fuel cell?

- A. I and II only
- **B.** I, II and IV only
- C. III and IV only
- **D.** II, III and IV only

Question 13

The cell shown below is set up under standard conditions. The electrodes are made of platinum.

Which one of the following occurs when the cell is producing electrical energy?

- **A.** Electrode Y is positive.
- **B.** The chloride ion concentration decreases.
- C. Hydrogen gas forms at electrode Y.
- **D.** The double-charged tin ion concentration decreases.

Question 14

In an experiment, two beakers are set up under standard laboratory conditions as follows:

Beaker 1: 1.5 g of pure magnesium in 50 mL of 1.0 M Mn²⁺ solution

Beaker 2: $1.5 \text{ g of pure magnesium in } 50 \text{ mL of } 1.0 \text{ M Fe}^{3+} \text{ solution}$

The following statements relate to the results of the experiment:

I The reaction in beaker 1 will be non-spontaneous.

II The reaction in beaker 2 must reach completion first.

III The reaction in beaker 1 has a smaller K_c value.

Which of these statements is/are incorrect?

- A. I only
- **B.** I and II only
- **C.** II and III only
- **D.** I, II and III

Use the following information to answer Questions 15 and 16.

The formation of sulfur trioxide gas from sulfur dioxide gas is shown in the equation below.

$$2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g) \quad \Delta H = -197 \text{ kJ mol}^{-1}$$

The activation energy for the reaction is 460 kJ mol⁻¹. The value of the equilibrium constant for the reaction at 500°C is 398 M⁻¹.

Question 15

If additional oxygen is added to an equilibrium mixture at constant volume and temperature, the reaction will move to the

- **A.** right to re-establish equilibrium because the concentration fraction is less than the equilibrium constant.
- **B.** right to re-establish equilibrium because the concentration fraction is greater than the equilibrium constant.
- **C.** left to re-establish equilibrium because the concentration fraction is greater than the equilibrium constant.
- **D.** left to re-establish equilibrium because the concentration fraction is less than the equilibrium constant.

Question 16

Consider the reaction shown below.

$$2SO_3(g) \rightleftharpoons 2SO_2(g) + O_2(g)$$

Which one of the following shows the correct values for the activation energy $(kJ mol^{-1})$ and the magnitude of the equilibrium constant for the reaction at 500°C?

	Activation energy	Equilibrium constant
А.	657	-398
B.	263	2.5×10^{-3}
C.	263	-398
D.	657	2.5×10^{-3}

Question 17

The combustion of a component of biodiesel is represented by the equation below.

$$2C_{17}H_{34}O_2(l) + 49O_2(g) \rightarrow 34CO_2(g) + 34H_2O(g)$$
 $\Delta H = -1.18 \times 10^4 \text{ kJ mol}^{-1}$

According to the equation, what mass of greenhouse gases would be produced for each megajoule of energy released in the combustion of the biodiesel component?

A. 127 g

- **B.** 179 g
- **C.** 127 kg
- **D.** 179 kg

Use the following information to answer Questions 18 and 19.

The metals P, Q and R were tested separately for any reaction in solutions of the metal ions. The results are shown in the table below.

P in Q ²⁺ solution	Q in R ²⁺ solution	R in P ²⁺ solution
no reaction	metal R forms	no reaction

Question 18

The order of increasing oxidising strength is

A. $Q^{2+} < P^{2+} < R^{2+}$

B. Q < P < R

C. $R^{2+} < P^{2+} < Q^{2+}$

D. R < P < Q

Question 19

The metals were also tested separately with a 1 M H⁺ solution.

Which one of the following shows the likely results of this test?

- A. Only metals P and Q will react.
- **B.** Only metals Q and R will react.
- **C.** All of the metals will react.
- **D.** The information supplied is insufficient to predict likely results.

Question 20

In the Maxwell–Boltzmann distribution curve, which one of the following is **not** changed when a sample of a gas is heated in a sealed container?

- A. height of the curve
- **B.** position of the peak of the curve
- C. total area under the curve
- **D.** average kinetic energy of the particles

END OF SECTION A

SECTION B

Instructions for Section B

Answer **all** questions in the spaces provided. Write using blue or black pen.

Give simplified answers to all numerical questions, with an appropriate number of significant figures; unsimplified answers will not be given full marks.

Show all working in your answers to numerical questions; no marks will be given for an incorrect answer unless it is accompanied by details of the working.

Ensure chemical equations are balanced and that the formulas for individual substances include an indication of state; for example, $H_2(g)$, NaCl(s).

Unless otherwise indicated, the diagrams in this booklet are **not** drawn to scale.

Question 1 (8 marks)

Zinc is an important and widely used metal that is extracted from zinc sulfide (ZnS) ore using different methods.

a. The first stage in extracting zinc from ZnS involves heating the ore very strongly in a current of air. The following equation shows the reaction that occurs:

$$2\text{ZnS}(s) + 3\text{O}_2(g) \rightleftharpoons 2\text{ZnO}(s) + 2\text{SO}_2(g)$$

i. With reference to equilibrium principles, explain why a **current** of air is used. 2 marks

ii. Suggest a reason why pure oxygen is **not** used in this reaction.

1 mark

b. One method used to isolate the zinc metal is to heat zinc oxide in a furnace using an industrial fuel called coke. Coke is essentially carbon with air pockets. In the furnace, the coke burns and produces carbon monoxide and other products. The carbon monoxide then reduces the zinc oxide, as shown by the following equation:

$$ZnO(s) + CO(g) \rightarrow Zn(g) + CO_2(g)$$

Write a balanced equation for the formation of the carbon monoxide by the combustion of carbon.

1 mark

- **c.** A large majority of zinc is produced industrially by electrolysis. Zinc oxide is reacted with sulfuric acid to produce an aqueous solution of zinc sulfate that is diluted further to produce the electrolyte in the electrolytic cell.
 - i. Zinc is formed on one of the electrodes. Identify the polarity (positive or negative) and name (anode or cathode) of this electrode. 1 mark

 ii. Use the electrochemical series to predict the reaction that will occur at the other electrode and write the half-equation for this reaction. 1 mark

 iii. Explain why zinc can be produced in an electrolytic cell using an aqueous solution as the electrolyte, whereas magnesium can only be produced using a molten electrolyte. 2 marks

Question 2 (14 marks)

Australian scientists are working to develop a process by which the fuel hydrogen gas can be manufactured in Australia and exported overseas as liquid ammonia (NH₂). After delivery overseas, the ammonia would be reconverted to nitrogen and hydrogen gases.

Ammonia gas is produced from nitrogen and hydrogen gases according to the following a. chemical equation:

$$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$$

The main steps in the industrial manufacture of ammonia are shown in the flow chart below.

i. Based on the information provided above, explain whether the chemical reaction generating ammonia is endothermic or exothermic. 2 marks

ii. 2 marks Explain why the reactant gases are used at high pressure in the compressor. iii. The process of ammonia production shown in the flow chart illustrates a conflict between the optimal condition needed for a high rate of reaction and the optimal condition needed for a high yield of product. Outline the nature of this conflict and suggest how the conflict is resolved. 3 marks

The by s	hydrogen gas will be produced by electrolysing water, using electricity generated olar energy or wind power.	
i.	Write the equation for the reaction that produces hydrogen at one electrode in the electrolytic cell used to produce hydrogen gas.	1 m
ii.	Explain why hydrogen gas is not classed as a biofuel.	1 m
iii.	Explain why hydrogen gas may be classed as a renewable fuel.	 1 n
iv.	Write a balanced thermochemical equation for the complete combustion of hydrogen gas.	 2 ma
Curr	gest two advantages of transporting hydrogen gas fuel overseas as liquid ammonia	

Question 3 (9 marks)

Heat packs are available for hikers and bushwalkers to warm parts of the body in cold conditions. These heat packs consist of powdered iron and other chemicals in a porous bag sealed in a plastic bag. When the plastic bag is torn open, oxygen from the air reacts with the iron according to the following equation:

$$4Fe(s) + 3O_2(g) \rightarrow 2Fe_2O_3(s)$$

One such heat pack was opened and its mass was recorded electronically at regular intervals over 40 hours. The graph below shows the change in mass of the pack against time.

a. The heat pack contained 11.2 g of powdered iron.Calculate the volume of oxygen gas used in the reaction at standard laboratory conditions (SLC).

3 marks

b. With reference to the rate of reaction and collision theory, explain the shape of the graph in the following time intervals:

i.	15 to 25 hours	2 marks
ii.	30 to 40 hours	2 marks

If the heat pack had been opened and kept in an atmosphere of pure oxygen, there may c. have been differences in the results.

On the graph shown on page 12, draw any changes that could be predicted if pure oxygen were used. 2 marks

Question 4 (9 marks)

Galvanic cells are used as portable power sources and are available in many different sizes and shapes.

- **a.** A novel use of a galvanic cell is a simple digital clock that can be powered by the current produced when a copper rod and zinc rod are pushed into a potato.
 - The potato acts as the salt bridge in this cell.What important feature must the liquid in the potato exhibit to enable the cell to operate?
 - **ii.** Write the half-equation for the reaction at the negative electrode of the cell. 1 mark
- **b.** Copper and zinc are also used as the electrodes in the Daniell cell, as shown below.

i. Which component of this cell acts as the salt bridge?
ii. Identify the chemical species X.
iii. Using the electrochemical series, calculate the expected voltage of this cell.
iii. Using the electrochemical series, calculate the expected voltage of this cell.
iii. Suggest one reason why the actual voltage of the cell is different to the expected voltage.
iii. I mark

1 mark

c. A popular galvanic cell that uses a moist paste for the electrolyte is known as a 'dry' cell. An early model of the dry cell used a carbon rod as the cathode and zinc casing as the anode. The overall cell reaction is shown by the following equation:

$$Zn(s) + 2NH_4^+(aq) + 2MnO_2(s) \rightarrow Zn^{2+}(aq) + 2NH_3(aq) + Mn_2O_3(s) + H_2O(l)$$

A particular dry cell operates at 0.85 V.

Calculate the amount of energy delivered for each 1.0 g of zinc consumed.

3 marks

Question 5 (11 marks)

Methanol is formed from carbon monoxide and hydrogen according to the following equation:

$$CO(g) + 2H_2(g) \rightleftharpoons CH_3OH(g)$$

The three gases were placed in a sealed vessel at a set temperature, and equilibrium was a. established. The graph below shows the concentration of the gases.

i. Calculate the value of K_c at time t_1 .

At time t_2 , the temperature of the reaction mixture was decreased. Using the data provided, and without the use of calculations, explain whether the reaction for the formation of methanol is endothermic or exothermic. 2 marks Consider how the graph for H₂ would be affected if a suitable catalyst had also been introduced into the vessel at time t_2 . Draw any changes you would expect to see on the concentration-time graph given above.

2 marks

2 marks

ii.

iii.

b.	Metl	hanol can be used as a fuel by the following methods:	
	Ι	used as the energy source in a fuel cell to generate electricity	
	II	combusted to boil water to generate steam, which turns a turbine to generate electricity.	
	A se in se	t mass of methanol was used completely in methods I and II to generate electricity parate experiments.	
	i.	Outline a safety precaution that should be taken for method II.	1 mark
	ii.	Explain which method, if either, would produce the greater amount of electrical energy.	2 marks
	iii.	Explain which method, if either, would produce the greater amount of greenhouse gases.	2 marks

Question 6 (4 marks)

The following list contains statements about petrodiesel and biodiesel. There are a number of incorrect statements in the list.

- 1. The strongest type of intermolecular forces in biodiesel are dispersion forces.
- 2. Petrodiesel is extracted from crude oil without the use of chemical reactions in the oil.
- 3. In cold weather, petrodiesel will flow along fuel lines better than biodiesel.
- 4. Biodiesel will absorb more moisture from the atmosphere than petrodiesel.
- 5. A change in temperature will affect the viscosity of both fuel types equally.
- 6. Complete combustion of each fuel will yield identical products.
- 7. Petrodiesel is a mixture of hydrocarbons with the general formula $C_n H_{2n+2}$.
- 8. In extraction and production, only petrodiesel generates greenhouse gases.
- 9. Biodiesel can be produced from plant or animal material and is often a fatty acid methyl ester compound.

In the table below, identify **two** incorrect statements and explain why each statement is incorrect.

Incorrect statement number	Explanation for why the statement is incorrect

END OF QUESTION AND ANSWER BOOKLET

Neap

Trial Examination 2020

VCE Chemistry Unit 3

Written Examination

Data Booklet

Instructions

This data booklet is provided for your reference. A question and answer booklet is provided with this data booklet.

Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic devices into the examination room.

Neap Education (Neap) Trial Exams are licensed to be photocopied or placed on the school intranet and used only within the confines of the school purchasing them, for the purpose of examining that school's students only. They may not be otherwise reproduced or distributed. The copyright of Neap Trial Exams remains with Neap. No Neap Trial Exam or any part thereof is to be issued or passed on by any person to any party inclusive of other schools, non-practising teachers, coaching colleges, tutors, parents, students, publishing agencies or websites without the express written consent of Neap.

1. Periodic table of the elements

2 He 4.0	9 10 F Ne 19.0 20.2	fluorine neon	17 18 CI Ar	35.5 39.9	35 36	Br Kr 79.9 83.8	bromine krypton	53 54	1 126.9 131.3	85 86	At Rn (222)	astatine radon	117 118	Ts 0g (294) (294)	r tennessine oganesson					
	8 0 16.0	oxygen	16 °	32.1 ^{suffur}	34	Se 79.0	selenium	52	127.6	84	P0	polonium polonium	116	Lv (292)	livermorium	11	175 D	Iutetium	103 Lr	(262) Investigation
	7 N 14.0	nitrogen	15 P	31.0	33	As 74.9	arsenic	5	50 121.8	83	300 D	bismuth	115	Mc (289)	moscovium	70	4 173 1	ytterbium	102 No	(259) nobelium
	6 C 12.0	carbon	14 S	28.1 silicon	32	Ge 72.6	germanium	50	Sn 118.7	82	207 2	2.0.2 .	114	FI (289)	flerovium	69	168 q	thulium	101 Md	(258) mendelevium
	5 B 10.8	boron	13 MI	27.0 aluminium	31	Ga 69.7	gallium	49	114.8	81		thallium	113	Nh (280)	nihonium	89	Er 1673	erbium	100 F	(257) fermium
					30	Zn 65.4	zinc	48	La 112.4	80	Hg 200 G	mercury	112	Cn (285)	copernicium	<u>6</u> 7	Ho 164 q	holmium	99 Es	(252) einsteinium
					29	Cu 63.5	copper	47	Ag 107.9	79	Au 107 D	pold gold	111	Rg (272)	roentgenium	99	סע 162 ה	dysprosium	98 Cf	(251) californium
	element	ement			28	Ni 58.7	nickel	46	106.4	78	Pt 105 1	platinum	110	Ds (271)	darmstadtium	<u>69</u>	Tb 158 0	terbium	97 Bk	(247) herkelium
	symbol of	name of el			27	Co 58.9	cobalt	45	HN 102.9	17	ا ر 102 ک	iridium	109	Mt (268)	meitnerium	64	6d 1573	gadolinium	96 Cm	(247) curium
	79 Au 197.0	gold			26	Fe 55.8	iron	44	hu 101.1	92	0s 100 7		108	Hs (267)	hassium	<u>6</u> 3	Eu 157 D	europium	95 Am	(243) americium
	nic number omic mass				25	Mn 54.9	manganese	43	1c (98)	<u>G</u> L	Re 186.7	rhenium	107	Bh (264)	bohrium	<u>6</u> 2	5m 150 4	samarium	94 Pu	(244) olutinium
	aton relative at				24	Cr 52.0	chromium	42	96.0	74	W В 2 в	tungsten	106	Sg (266)	seaborgium	61	Pm (145)	promethium	93 Np	(237) Pentunium
					23	V 50.9	vanadium	41	92.9	73	Ta 180 0	tantalum	105	Db (262)	dubnium	09	Nd 144.2	ne odymium	92 U	238.0 ^{uranium}
					22	Ti 47.9	titanium	40	2 r 91.2	72	Hf 178 5	hafnium	104	Rt (261)	rutherfordium	59	Pr 140 9	praseodymium	91 Pa	231.0
					21	Sc 45.0	scandium	39	88.9	y containe	57–71 lanthanoids			89–103 actinoids		58	Ce 140 1	cerium	90 Th	232.0 thrium
	4 Be	beryllium	12 Ma	24.3 magnesium	20	Ca 40.1	calcium	38	sr 87.6	26	Ba 127 2	barium	88	Ra (226)	radium	57	La 138 0	lanthanum	89 Ac	(227) actinium
H H H H H H	3 Li 6.9	lithium	11 Na	23.0 sodium	19	К 39.1	potassium	37	KD 85.5	55	Cs 137 0	c.aesium	87	Fr (223)	francium					

The value in brackets indicates the mass number of the longest-lived isotope.

2. Electrochemical series

Reaction	Standard electrode potential (E°) in volts at 25°C
$F_2(g) + 2e^- \rightleftharpoons 2F^-(aq)$	+2.87
$H_2O_2(aq) + 2H^+(aq) + 2e^- \rightleftharpoons 2H_2O(l)$	+1.77
$Au^+(aq) + e^- \rightleftharpoons Au(s)$	+1.68
$Cl_2(g) + 2e^- \rightleftharpoons 2Cl^-(aq)$	+1.36
$O_2(g) + 4H^+(aq) + 4e^- \rightleftharpoons 2H_2O(l)$	+1.23
$Br_2(l) + 2e^- \rightleftharpoons 2Br^-(aq)$	+1.09
$Ag^+(aq) + e^- \rightleftharpoons Ag(s)$	+0.80
$Fe^{3+}(aq) + e^{-} \rightleftharpoons Fe^{2+}(aq)$	+0.77
$O_2(g) + 2H^+(aq) + 2e^- \rightleftharpoons H_2O_2(aq)$	+0.68
$I_2(s) + 2e^- \rightleftharpoons 2I^-(aq)$	+0.54
$O_2(g) + 2H_2O(l) + 4e^- \rightleftharpoons 4OH^-(aq)$	+0.40
$Cu^{2+}(aq) + 2e^{-} \rightleftharpoons Cu(s)$	+0.34
$\operatorname{Sn}^{4+}(\operatorname{aq}) + 2e^{-} \rightleftharpoons \operatorname{Sn}^{2+}(\operatorname{aq})$	+0.15
$S(s) + 2H^{+}(aq) + 2e^{-} \rightleftharpoons H_2S(g)$	+0.14
$2H^+(aq) + 2e^- \rightleftharpoons H_2(g)$	0.00
$Pb^{2+}(aq) + 2e^{-} \rightleftharpoons Pb(s)$	-0.13
$\operatorname{Sn}^{2+}(\operatorname{aq}) + 2e^{-} \rightleftharpoons \operatorname{Sn}(s)$	-0.14
$Ni^{2+}(aq) + 2e^{-} \rightleftharpoons Ni(s)$	-0.25
$\operatorname{Co}^{2+}(\operatorname{aq}) + 2e^{-} \rightleftharpoons \operatorname{Co}(s)$	-0.28
$Cd^{2+}(aq) + 2e^{-} \rightleftharpoons Cd(s)$	-0.40
$Fe^{2+}(aq) + 2e^{-} \rightleftharpoons Fe(s)$	-0.44
$Zn^{2+}(aq) + 2e^{-} \rightleftharpoons Zn(s)$	-0.76
$2H_2O(1) + 2e^- \rightleftharpoons H_2(g) + 2OH^-(aq)$	-0.83
$Mn^{2+}(aq) + 2e^{-} \Longrightarrow Mn(s)$	-1.18
$\operatorname{Al}^{3+}(\operatorname{aq}) + 3e^{-} \rightleftharpoons \operatorname{Al}(s)$	-1.66
$Mg^{2+}(aq) + 2e^{-} \rightleftharpoons Mg(s)$	-2.37
$Na^{+}(aq) + e^{-} \rightleftharpoons Na(s)$	-2.71
$Ca^{2+}(aq) + 2e^{-} \rightleftharpoons Ca(s)$	-2.87
$K^+(aq) + e^- \rightleftharpoons K(s)$	-2.93
$\text{Li}^+(\text{aq}) + e^- \rightleftharpoons \text{Li}(s)$	-3.04

3. Chemical relationships

Name	Formula
number of moles of a substance	$n = \frac{m}{M}; n = cV; n = \frac{V}{V_m}$
universal gas equation	pV = nRT
calibration factor (CF) for bomb calorimetry	$CF = \frac{VIt}{\Delta T}$
heat energy released in the combustion of a fuel	$q = mc \Delta T$
enthalpy of combustion	$\Delta H = \frac{q}{n}$
electric charge	Q = It
number of moles of electrons	$n(e^{-}) = \frac{Q}{F}$
% atom economy	$\frac{\text{molar mass of desired product}}{\text{molar mass of all reactants}} \times \frac{100}{1}$
% yield	$\frac{\text{actual yield}}{\text{theoretical yield}} \times \frac{100}{1}$

4. Physical constants and standard values

Name	Symbol	Value
Avogadro constant	$N_{\rm A}$ or L	$6.02 \times 10^{23} \text{ mol}^{-1}$
charge on one electron (elementary charge)	е	$-1.60 \times 10^{-19} \text{ C}$
Faraday constant	F	$96500~{\rm C~mol}^{-1}$
molar gas constant	R	$8.31 \text{ J mol}^{-1} \text{ K}^{-1}$
molar volume of an ideal gas at SLC (25°C and 100 kPa)	V _m	24.8 L mol^{-1}
specific heat capacity of water	С	4.18 kJ kg ⁻¹ K ⁻¹ or 4.18 J g ⁻¹ K ⁻¹
density of water at 25°C	d	997 kg m ^{-3} or 0.997 g mL ^{-1}

5. Unit conversions

Measured value	Conversion	
0°C	273 K	
100 kPa	750 mm Hg or 0.987 atm	
1 litre (L)	$1 \text{ dm}^3 \text{ or } 1 \times 10^{-3} \text{ m}^3 \text{ or } 1 \times 10^3 \text{ cm}^3 \text{ or } 1 \times 10^3 \text{ mL}$	

6. Metric (including SI) prefixes

Metric (including SI) prefixes	Scientific notation	Multiplying factor
giga (G)	10 ⁹	1 000 000 000
mega (M)	10 ⁶	1 000 000
kilo (k)	10 ³	1000
deci (d)	10 ⁻¹	0.1
centi (c)	10 ⁻²	0.01
milli (m)	10^{-3}	0.001
micro (μ)	10 ⁻⁶	0.000001
nano (n)	10 ⁻⁹	0.000000001
pico (p)	10 ⁻¹²	0.000000000001

7. Acid-base indicators

Name	pH range	Colour change from lower pH to higher pH in range
thymol blue (1st change)	1.2–2.8	$red \rightarrow yellow$
methyl orange	3.1-4.4	$red \rightarrow yellow$
bromophenol blue	3.0-4.6	yellow \rightarrow blue
methyl red	4.4-6.2	$red \rightarrow yellow$
bromothymol blue	6.0–7.6	yellow \rightarrow blue
phenol red	6.8-8.4	yellow \rightarrow red
thymol blue (2nd change)	8.0–9.6	yellow \rightarrow blue
phenolphthalein	8.3–10.0	$colourless \rightarrow pink$

8. Representations of organic molecules

The following table shows different representations of organic molecules, using butanoic acid as an example.

Formula	Representation
molecular formula	C ₄ H ₈ O ₂
structural formula	
semi-structural (condensed) formula	CH ₃ CH ₂ CH ₂ COOH or CH ₃ (CH ₂) ₂ COOH
skeletal structure	о н

9. Formulas of some fatty acids

Name	Formula	Semi-structural formula
lauric	C ₁₁ H ₂₃ COOH	CH ₃ (CH ₂) ₁₀ COOH
myristic	C ₁₃ H ₂₇ COOH	CH ₃ (CH ₂) ₁₂ COOH
palmitic	C ₁₅ H ₃₁ COOH	CH ₃ (CH ₂) ₁₄ COOH
palmitoleic	C ₁₅ H ₂₉ COOH	CH ₃ (CH ₂) ₄ CH ₂ CH=CHCH ₂ (CH ₂) ₅ CH ₂ COOH
stearic	C ₁₇ H ₃₅ COOH	CH ₃ (CH ₂) ₁₆ COOH
oleic	C ₁₇ H ₃₃ COOH	CH ₃ (CH ₂) ₇ CH=CH(CH ₂) ₇ COOH
linoleic	C ₁₇ H ₃₁ COOH	CH ₃ (CH ₂) ₄ (CH=CHCH ₂) ₂ (CH ₂) ₆ COOH
linolenic	C ₁₇ H ₂₉ COOH	CH ₃ CH ₂ (CH=CHCH ₂) ₃ (CH ₂) ₆ COOH
arachidic	C ₁₉ H ₃₉ COOH	CH ₃ (CH ₂) ₁₇ CH ₂ COOH
arachidonic	C ₁₉ H ₃₁ COOH	CH ₃ (CH ₂) ₄ (CH=CHCH ₂) ₃ CH=CH(CH ₂) ₃ COOH

10. Formulas of some biomolecules

vitamin C (ascorbic acid)

 α -glucose

sucrose

vitamin D₃ (cholecalciferol)

glycerol

 β -fructose

amylose (starch)

11. Heats of combustion of common fuels

The heats of combustion in the following table are calculated at SLC (25°C and 100 kPa) with combustion products being CO_2 and H_2O . Heat of combustion may be defined as the heat energy released when a specified amount of a substance burns completely in oxygen and is, therefore, reported as a positive value, indicating a magnitude. Enthalpy of combustion, ΔH , for the substances in this table would be reported as negative values, indicating the exothermic nature of the combustion reaction.

Fuel	Formula	State	Heat of combustion (kJ g ⁻¹)	Molar heat of combustion (kJ mol ⁻¹)
hydrogen	H ₂	gas	141	282
methane	CH ₄	gas	55.6	890
ethane	C ₂ H ₆	gas	51.9	1560
propane	C ₃ H ₈	gas	50.5	2220
butane	C ₄ H ₁₀	gas	49.7	2880
octane	C ₈ H ₁₈	liquid	47.9	5460
ethyne (acetylene)	C ₂ H ₂	gas	49.9	1300
methanol	CH ₃ OH	liquid	22.7	726
ethanol	C ₂ H ₅ OH	liquid	29.6	1360

12. Heats of combustion of common blended fuels

Blended fuels are mixtures of compounds with different mixture ratios and, hence, determination of a generic molar enthalpy of combustion is not realistic. The values provided in the following table are typical values for heats of combustion at SLC (25°C and 100 kPa) with combustion products being CO₂ and H₂O. Values for heats of combustion will vary depending on the source and composition of the fuel.

Fuel	State	Heat of combustion (kJ g ⁻¹)
kerosene	liquid	46.2
diesel	liquid	45.0
natural gas	gas	54.0

13. Energy content of food groups

Food	Heat of combustion (kJ g ⁻¹)
fats and oils	37
protein	17
carbohydrate	16

Bond	Wave number (cm ⁻¹)	Bond	Wave number (cm ⁻¹)
C–Cl (chloroalkanes)	600-800	C=O (ketones)	1680–1850
C–O (alcohols, esters, ethers)	1050-1410	C=O (esters)	1720–1840
C=C (alkenes)	1620–1680	C-H (alkanes, alkenes, arenes)	2850-3090
C=O (amides)	1630–1680	O–H (acids)	2500-3500
C=O (aldehydes)	1660–1745	O–H (alcohols)	3200-3600
C=O (acids)	1680–1740	N-H (amines and amides)	3300-3500

14. Characteristic ranges for infra-red absorption

15. ¹³C NMR data

Typical 13 C shift values relative to TMS = 0 These can differ slightly in different solvents.

Type of carbon	Chemical shift (ppm)
R–CH ₃	8–25
R-CH ₂ -R	20-45
R ₃ CH	40–60
R ₄ -C	36–45
R-CH ₂ -X	15-80
R_3C-NH_2, R_3C-NR	35–70
R–CH ₂ –OH	50–90
RC≡CR	75–95
R ₂ C=CR ₂	110–150
RCOOH	160–185
	165–175
R H C=0	190–200
R ₂ C=O	205-220

16.¹H NMR data

Typical proton shift values relative to TMS = 0

These can differ slightly in different solvents. The shift refers to the proton environment that is indicated in bold letters in the formula.

Type of proton	Chemical shift (ppm)
R–CH ₃	0.9–1.0
R-CH ₂ -R	1.3–1.4
RCH=CH–CH ₃	1.6–1.9
R ₃ -CH	1.5
$CH_3 - C$ or $CH_3 - C$ NHR	2.0
R CH ₃	2.1–2.7
$R-CH_2-X (X = F, Cl, Br \text{ or } I)$	3.0-4.5
R–СН ₂ –ОН, R ₂ –С Н –ОН	3.3–4.5
	3.2
R–O–CH ₃ or R–O–CH ₂ R	3.3–3.7
	2.3
	3.7–4.8
R–O–H	1–6 (varies considerably under different conditions)
R-NH ₂	1–5
RHC=C H R	4.5–7.0
ОН	4.0–12.0

Type of proton	Chemical shift (ppm)
Ю	6.9–9.0
	8.1
R-CH	9.4–10.0
R-со-н	9.0–13.0

17. 2-amino acids (α-amino acids)

The table below provides simplified structures to enable the drawing of zwitterions, the identification of products of protein hydrolysis and the drawing of structures involving condensation polymerisation of amino acid monomers.

Name	Symbol	Structure		
alanine	Ala	СН ₃ Н ₂ N—СН—СООН		
arginine	Arg	NH H ₂ N—CH—COOH		
asparagine	Asn	О Ш СН ₂ -С—NН ₂ Н ₂ N—СН—СООН		
aspartic acid	Asp	СН ₂ —СООН Н ₂ N—СН—СООН		
cysteine	Cys	СН ₂ —SH Н ₂ N—CH—СООН		
glutamic acid	Glu	СН ₂ —СН ₂ —СООН Н ₂ N—СН—СООН		
glutamine	Gln	О Ш СН ₂ -СН ₂ -С-NH ₂ Н ₂ NСНСООН		
glycine	Gly	H ₂ N—CH ₂ —COOH		
histidine	His	$ \begin{array}{c} $		
isoleucine	Ile	СН ₃ —СН—СН ₂ —СН ₃ Н ₂ N—СН—СООН		

Name	Symbol	Structure		
leucine	Leu	СH ₃ —CH—CH ₃ CH ₂ H ₂ N—CH—COOH		
lysine	Lys	СH ₂ -CH ₂ -CH ₂ -CH ₂ -NH ₂ H ₂ N-CH-СООН		
methionine	Met	СH ₂ -CH ₂ -S-CH ₃ H ₂ N-CH-СООН		
phenylalanine	Phe	CH2 H2N-CH-COOH		
proline	Pro	HN COOH		
serine	Ser	СН ₂ —ОН Н ₂ N—СН—СООН		
threonine	Thr	Сн ₃ —сн—он н ₂ N—сн—соон		
tryptophan	Trp			
tyrosine	Tyr	CH2-OH H2N-CH-COOH		
valine	Val	Сн ₃ —Сн—Сн ₃ н ₂ N—Сн—Соон		

END OF DATA BOOKLET

Trial Examination 2020

VCE Chemistry Unit 3

Written Examination

Multiple-choice Answer Sheet

Student's Name:

Teacher's Name:

Instructions

Use a **pencil** for **all** entries. If you make a mistake, **erase** the incorrect answer – **do not** cross it out. Marks will **not** be deducted for incorrect answers.

Use pencil only

No mark will be given if more than one answer is completed for any question.

All answers must be completed like this example:

1	Α	В	С	D
2	Α	В	С	D
3	Α	В	С	D
4	Α	В	С	D
5	Α	В	С	D
6	Α	В	С	D
7	Α	В	С	D
8	Α	В	С	D
9	Α	В	С	D
10	Α	В	С	D

11	Α	В	С	D
12	Α	В	С	D
13	Α	В	С	D
14	Α	В	С	D
15	Α	В	С	D
16	Α	В	С	D
17	Α	В	С	D
18	Α	В	С	D
19	Α	В	С	D
20	Α	В	С	D

Neap Education (Neap) Trial Exams are licensed to be photocopied or placed on the school intranet and used only within the confines of the school purchasing them, for the purpose of examining that school's students only. They may not be otherwise reproduced or distributed. The copyright of Neap Trial Exams remains with Neap. No Neap Trial Exam or any part thereof is to be issued or passed on by any person to any party inclusive of other schools, non-practising teachers, coaching colleges, tutors, parents, students, publishing agencies or websites without the express written consent of Neap.