

Trial Examination 2021

VCE Chemistry Unit 1

Written Examination

Question and Answer Booklet

Reading time: 15 minutes
Writing time: 1 hour 30 minutes

Student's Name:	
Teacher's Name:	

Structure of booklet

Section	Number of questions	Number of questions to be answered	Number of marks
А	20	20	20
В	5	5	50
			Total 70

Students are permitted to bring into the examination room: pens, pencils, highlighters, erasers, sharpeners, rulers and one scientific calculator.

Students are NOT permitted to bring into the examination room: blank sheets of paper and/or correction fluid/tape.

Materials supplied

Question and answer booklet of 14 pages

Data booklet

Answer sheet for multiple-choice questions

Instructions

Write your **name** and your **teacher's name** in the space provided above on this page, and on the answer sheet for multiple-choice questions.

Unless otherwise indicated, the diagrams in this booklet are **not** drawn to scale.

All written responses must be in English.

At the end of the examination

Place the answer sheet for multiple-choice questions inside the front cover of this booklet.

You may keep the data booklet.

Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic devices into the examination room.

Neap[®] Education (Neap) Trial Exams are licensed to be photocopied or placed on the school intranet and used only within the confines of the school purchasing them, for the purpose of examining that school's students only. They may not be otherwise reproduced or distributed. The copyright of Neap Trial Exams remains with Neap. No Neap Trial Exam or any part thereof is to be issued or passed on by any person to any party inclusive of other schools, non-practising teachers, coaching colleges, tutors, parents, students, publishing agencies or websites without the express written consent of Neap.

SECTION A - MULTIPLE-CHOICE QUESTIONS

Instructions for Section A

Answer all questions in pencil on the answer sheet provided for multiple-choice questions.

Choose the response that is **correct** or that **best answers** the question.

A correct answer scores 1; an incorrect answer scores 0.

Marks will **not** be deducted for incorrect answers.

No marks will be given if more than one answer is completed for any question.

Unless otherwise indicated, the diagrams in this booklet are **not** drawn to scale.

Question 1

Which one of the following characteristics applies to transition metals but **not** to the main group metals?

- **A.** They have atoms with one, two or three electrons in their outer electron shell.
- **B.** They form ions with variable charges.
- **C.** They can be hammered into shapes without fracturing.
- **D.** They conduct electricity in both the solid and molten states.

Use the following information to answer Questions 2 and 3.

A sample of gold metal and a sample of gold nanoparticles were analysed and compared.

Question 2

The properties of gold metal will include

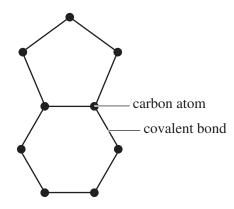
- **A.** a very low melting point.
- **B.** magnetic attraction.
- C. malleability.
- **D.** brittleness.

Question 3

The comparison of the samples is likely to show that

- **A.** for equivalent sample volumes, gold nanoparticles have the lower total surface area.
- **B.** both exhibit a high degree of chemical reactivity.
- **C.** only gold nanoparticles have neutrons located outside the nucleus.
- **D.** some of the properties exhibited by gold nanoparticles are absent in gold metal.

Ouestion 4


A chemical particle has the electron configuration 1s²2s²2p⁶3s²3p⁶3d¹⁰4s²4p⁶.

This particle is most likely to be an

- **A.** uncharged atom of an element located in the first transition series.
- **B.** unreactive, noble gas that is from the third period.
- **C.** ion of a metallic element that is positively charged.
- **D.** atom of a non-metallic element that has lost electrons.

Use the following information to answer Questions 5 and 6.

The diagram below shows the arrangement of some of the atoms in a substance that is an elemental form of carbon.

Question 5

Which elemental form of carbon is shown?

- A. graphite
- **B.** fullerene
- C. diamond
- D. graphene

Question 6

The substance depicted in the diagram will

- **A.** conduct electricity, as there are delocalised electrons in the structure.
- **B.** conduct electricity, as carbon ions form and these carry the charge.
- C. not conduct electricity, as all electrons are localised and so no charges move.
- **D.** not conduct electricity, as only ions carry charge and no ions are present.

Question 7

Which two features of elements are used to formulate the modern periodic table?

- **A.** mass number and metallic character
- **B.** atomic number and mass number
- **C.** chemical reactivity and electron configuration
- **D.** electron configuration and atomic number

Question 8

Which one of the following is the valence shell electron-pair repulsion (VSEPR) model mainly used to predict?

- **A.** shapes of molecules
- **B.** electrical conductivity of substances
- C. polar character of bonds within a molecule
- **D.** electronegativity of elements

Question 9

Niels Bohr's work on emission spectra and his model of the atom were mainly concerned with the arrangement of

- **A.** protons.
- **B.** electrons.
- C. neutrons.
- **D.** all nuclear particles.

Question 10

Which one of the following rows correctly shows the details of the fourth shell of an atom, using the Schrödinger model?

	Number of subshells	Number of orbitals	Number of d-type orbitals
A.	4	32	1
В.	4	16	5
C.	16	32	1
D.	16	16	5

Question 11

Each of the isotopes ¹²C, ¹³C and ¹⁴C have the same

- **A.** number of neutrons and electrons.
- **B.** ground state electron configuration and nuclear mass.
- **C.** number of protons and mass number.
- **D.** atomic number and number of outer-shell electrons.

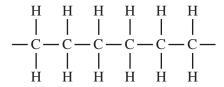
Question 12

Which one of the following pairs of molecules have the same shape?

- A. CO₂ and HCl
- **B.** CH_4 and SF_6
- \mathbf{C} . \mathbf{NH}_3 and $\mathbf{H}_2\mathbf{O}$
- **D.** N_2 and H_2S

Question 13

An experiment was conducted to determine the order of reactivity of four metals: Q, R, X and Y. The observations in the experiment include the following.


- All metals reacted with air and metal R reacted the fastest.
- There was no visible reaction of metal Q with water and metal Y reacted slowly.
- Metal X did not react with dilute hydrochloric acid, but all other metals produced bubbling.

What is the order of increasing reactivity of the metals?

- $A. \qquad R < Y < Q < X$
- $\mathbf{B.} \qquad \mathbf{X} < \mathbf{R} < \mathbf{Y} < \mathbf{Q}$
- C. R < Q < X < Y
- $\mathbf{D.} \qquad \mathbf{X} < \mathbf{Q} < \mathbf{Y} < \mathbf{R}$

Use the following information to answer Questions 14–16.

Part of the structure of an addition polymer is shown in the diagram below.

Question 14

This polymer is best described as a

- **A.** thermosetting plastic, as it will soften when heated to moderate temperatures.
- **B.** thermosetting plastic, as it will char when heated to high temperatures.
- **C.** thermosoftening plastic, as it will soften when heated to moderate temperatures.
- **D.** thermosoftening plastic, as it will char when heated to high temperatures.

Question 15

What is the relative molecular mass of the monomer used to make this addition polymer?

- **A.** 28
- **B.** 30
- **C.** 42
- **D.** 44

Question 16

A plasticiser is a small molecule that fits between the polymer chains.

Which one of the following will **not** change by use of a plasticiser?

- **A.** intensity of intermolecular forces
- **B.** strength of covalent bonds within a polymer chain
- **C.** percentage of crystalline areas
- **D.** temperature at which the polymer starts to melt

Question 17

Most of the polymer materials used in society are manufactured from chemicals derived from crude oil.

What is a major disadvantage of the use of these polymers?

- **A.** the cost of items made from the polymer materials
- **B.** the prohibitive expense of recycling thermoplastics
- **C.** limited reserves of the raw materials available
- **D.** the narrow range of applications for polymer use

Use the following information to answer Questions 18 and 19.

An experiment was conducted to investigate crystal formation using common table salt (NaCl). Different masses of NaCl were dissolved separately in 100 mL of water at the same temperature in numbered beakers. The water in each of the beakers was evaporated over different times until dryness was achieved. The table below shows the set-up of the experiment.

Beaker	1	2	3	4
Mass of NaCl dissolved in 100 mL of water	10 g	10 g	30 g	30 g
Time taken for evaporation to dryness	2 hours	12 hours	2 hours	12 hours

Question 18

Which beaker will contain crystals of the smallest size?

- **A**. 1
- **B.** 2
- **C.** 3
- **D.** 4

Ouestion 19

In the experiment, the size of the crystals in each beaker was determined using a simple binocular microscope.

Which one of the following best describes what could be seen using the microscope?

- **A.** protons, neutrons and electrons of the ions arranged in a lattice
- B. individual sodium ions and chloride ions arranged in a regular array
- C. crystals consisting of spheres stacked on top of each other
- **D.** small, regular-shaped pieces with flat sides similar to small cubes

Question 20

An organic compound has the molecular formula $C_5H_{10}O_2$.

Which one of the following could **not** be the name of the compound?

- **A.** ethyl propanoate
- **B.** butyl methanoate
- C. pentane-1,2-diol
- D. pentanoic acid

END OF SECTION A

SECTION B

Instructions for Section B

Answer all questions in the spaces provided.

Give simplified answers to all numerical questions, with an appropriate number of significant figures; unsimplified answers will not be given full marks.

Show all working in your answers to numerical questions; no marks will be given for an incorrect answer unless it is accompanied by details of the working.

Ensure chemical equations are balanced and that the formulas for individual substances include an indication of state, for example, $H_2(g)$, NaCl(s).

Unless otherwise indicated, the diagrams in this booklet are **not** drawn to scale.

Question 1 (5 marks)

a. The addition polymer polyacrylonitrile (PAN) is used in the production of carpets and fibres. A section of the polymer is shown in the diagram below.

$$\begin{array}{c|c} CH & CH & CH \\ \hline \\ CH_2 & CH_2 & CH_2 & CH_2 \\ \hline \\ N & N & N \\ \end{array}$$

Draw a structural diagram for the monomer used to form PAN.

1 mark

b. i. Draw a structural diagram of a five-carbon alcohol molecule.

1 mark

ii. Name the molecule drawn in part b.i.

1 mark

c. A metal ion with a +2 charge has 23 protons in its nucleus. It forms a compound with a halogen ion containing 17 protons.

Give the name and formula of the compound.

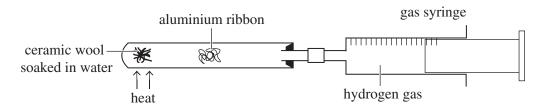
2 marks

Name _

Formula __

Question 2 (12 marks)

The element hydrogen has three isotopes as shown in the table below.


Isotope	Isotopic symbol	Relative isotopic mass
protium	¹ H	1.008
deuterium	² H	2.014
tritium	³ H	3.016

	relative atomic mass of hydrogen is 1.0. Using information from the table above, ight appear that the value should be closer to 2.0.	
Exp	lain this apparent contradiction.	2 marks
	ome versions of the modern periodic table, hydrogen is placed at the top of the group 1 nents, whereas in other versions it is not placed at the top of any group.	
i.	Give one reason that supports placing hydrogen at the top of group 1.	1 mark
ii.	Give one reason that does not support placing hydrogen at the top of group 1.	1 mark
	rogen gas consists of diatomic molecules, H ₂ , whereas helium gas consists of single ns, He.	
i.	Explain the difference in the composition of the two gases.	2 marks
ii.	The interaction between the particles of each gas at very low temperatures is of the same type.	
	Name this type of intermolecular attraction.	1 mark

d. Hydrogen gas is produced during the reaction of aluminium metal with steam. The relevant reaction is represented by the following equation.

aluminium + water (as steam) → aluminium oxide + hydrogen gas

This chemical reaction was used in the experiment shown below.

Mass of aluminium ribbon reacted in the experiment 0.859 g
Mass of hydrogen gas formed in the experiment 0.0954 g

Based on its chemical formula, calculate the percentage by mass of hydrog in water.	gen 1 ma
Using the information in part d.i. and the mass of hydrogen gas formed in experiment above, calculate the mass of oxygen atoms that reacted with the aluminium to produce aluminium oxide.	
By calculation, show that the empirical formula of aluminium oxide is Al ₂	O ₃ . 2 mar

Question 3 (12 marks)

The structural formulas of a range of carbon-based compounds are shown in the table below.

A. H H H H C C C C H H H H	B. H C C C H H H H H H H	C. O H H C O C H H H H H
D. O H C O H	E. H C C H C H O H O	F. H C C H H H H H
G. H H C H H C H H H H H H H	Н. H—С≡С—Н	I. H H H H C C C C H H H H H

- **a.** Use the letters (A to I) from the table to identify the compounds in the following questions. The letters may be used once, more than once or not at all.
 - i. Identify the alkyne in the table. 1 mark
 - ii. Identify one carboxylic acid in the table. 1 mark
 - iii. Which compound has a relative molecular mass of 46?
 - iv. Which **two** compounds are isomers but are not alkanes? 1 mark
 - v. Identify **one** compound that has the molecular formula identical to its empirical formula.

vi.	Identify the compound with all of the features listed below.	1 mark
	unbranched molecule	
	• component of crude oil with molar mass greater than 30 g mol ⁻¹	
	• used primarily as a fuel	
vii.	Of the compounds with three carbon atoms per molecule, which one has the lowest boiling point?	1 mark
Com	apounds G and I have the same molar mass.	
Expl	lain which compound, if either, has the higher boiling point.	2 marks
Com	apound E has a relative molecular mass of 74.0.	
Wha	at is the total number of atoms in 0.935 g of this compound?	3 marks

Magnesium is an industrially important metal that is found in deposits only as an ore. Magnesium ore is a compound of magnesium.

	ain why magnesium is only found as an ore and never in deposits as a pure metal, e way that gold is found.	2 mark
hydro	method used to extract magnesium from its ore involves converting magnesium oxide to magnesium chloride. This is then melted and, using electricity, magnesium	
is iso	lated according to the following equation: $MgCl_2 \rightarrow Mg + Cl_2$	
i.	Magnesium chloride must be molten to conduct electricity because solid magnesium chloride is not conductive.	
	In terms of structure and bonding, explain why the molten compound conducts, but the solid compound does not.	2 mar
ii.	A temperature of 700°C is used to melt solid magnesium chloride. In terms of structure and bonding, explain why such a high temperature is required to melt the magnesium chloride.	2 mar
		2
	Apart from electrical conductivity and high melting point, name one other property	

c .	Magn	esium is located in period 3 of the periodic table.	
	i.	Which metallic element in period 3 is least reactive?	1 mark
	ii.	Which element in period 3 has the largest atomic radius?	1 mark
	iii.	Which element in period 3 has the lowest first ionisation energy?	1 mark
•	house and a of the	esium and other metals are often modified before application in industry and in shold uses. This modification of metals can include the use of coatings, heat treatment lloy production. The main purpose of the modifications is to change the properties metal to better suit the application. A range of these modifications are listed in the below. 1. Musical instruments are made of brass – an alloy of copper and zinc.	
		2. Steel food cans are coated with tin.	
		3. Steel support beams are made from iron with some carbon.	
	Selec	4. A frying pan surface is coated with Teflon. t and circle one number (1–4) in the table above. For your selected modification,	
	identi	fy the desired property of the modified metal and explain how the modification wed this desired property.	2 marks

Question 5 (9 marks)

Give concise explanations for the following observations using relevant chemical concepts.

A thin stream of water will be bent towards a charged rod that is brought close to the water. It makes no difference whether the rod is positively charged or negatively charged.	3 ma
Plastic items consisting of unbranched polymer chains are usually not transparent.	3 m
Ice floats on liquid water.	3 m
ree floats on figure water.	J 1116

END OF QUESTION AND ANSWER BOOKLET

Trial Examination 2021

VCE Chemistry Unit 1

Written Examination

Data Booklet

Instructions

This data booklet is provided for your reference.

A question and answer booklet is provided with this data booklet.

Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic devices into the examination room.

1. Periodic table of the elements

					1				
Helium	Ne 20.2 neon	18 Ar 39.9 argon	36	83.8 krypton	54 Xe	xenon xenon	R %	radon 118	Og (294) oganesson
0	H 19.0 fluorine	17 Cl 35.5 chlorine	35	5 r 79.9 bromine	53	126.9 iodine	85 At	astatine	$\mathbf{TS}_{(294)}$ tennessine
٥	Oxygen	16 S 32.1 sulfur	2 8 9	79.0 selenium	52 Te	127.6 tellurium	Po	polonium	LV (292) livermorium
1	N 14.0 nitrogen	15 16 P S S 30.1 32.1 sulfur	33	AS 74.9 arsenic	Sb	antimony	Bi	bismuth	Mc (289)
		Si 28.1 silicon							
		13 A1 27.0 aluminium							
			30	Ch 65.4 zinc	& C	cadmium	80 H80	mercury	Cn (285) copernicium
					A 47			gold	Rg (272) roentgenium c
			28	58.7 nickel	Pd	106.4 palladium	P 48	platinum 110	DS (271) darmstadtium r
	symbol of element name of elecment		727	58.9 cobalt	8	_		iridium 100	Mt (268) meitnerium
	symbol name of	1	26	55.8 iron	R 4	uthenium	9.0 S.5 S.5		$\left \begin{array}{c} \mathbf{HS} \\ (267) \\ \text{hassium} \end{array} \right _{\Pi}$
70	Au 197.0 gold		25	54.9	143 Tc			_	Bh (264)
on one	atomic mass relative atomic mass			Cr 52.0 chromium n					Sg (266) seaborgium
e do de	aton relative at		23	50.9 c	4 S S				Db (262) dubnium se
			22	47.9 titanium v.	Z	\rightarrow	72 Hf		Rf (261) rutherfordium d
				45.0 ti			57–71 Ianthanoids		89–103 actinoids
	Be 9.0 beryllium	Mg 24.3 magnesium		40.1 sc			Ba 5	sarium 88	Ra 89 (226) a a radium
1 1.0 hydrogen		11 Na Sodium ma		39.1 potassium c					Fr (223) francium

57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 La Ce Pr Nd Pm Sm Eu Gd Tb Dy HO Er Tm Yb Lu 138.9 140.1 144.2 144.2 150.4 152.0 157.3 158.9 167.3 167.3 168.9 173.1 175.0 lanthanum promechium promechium promechium panarium europium gadolinium terbium dysproxium thulmium ytterbium lutetium			
58 59 60 61 62 63 64 65 66 67 68 69 Ce Pr Nd Pm Sm Eu Gd Tb Dy HO Er Tm 140.1 140.9 144.2 (145) 150.4 152.0 157.3 158.9 167.3 167.3 168.9 cerium prosecodymium promethium pr	$\frac{71}{\mathbf{Lu}}$	175.0	lutetium
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{70}{ ext{Yb}}$	173.1	ytterbium
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	69 Tm	168.9	thulmium
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	\mathbb{E}^6	167.3	erbium
58 59 60 61 62 63 64 65 Ce Pr 140.1 Nd 140.9 Pm 144.2 140.1 Sm 150.4 140.1 Eu Gd 150.4 	67 H0	164.9	homium
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	66 Dy	162.5	dysprosium
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	65 Tb	158.9	terbium
58 59 60 61 62 Ce Pr Nd Pm Sm 140.1 140.9 144.2 150.4 150.4 cerium prasecodymium promethium promethium promethium promethium	64 Gd	157.3	gadolinium
58 59 60 61 Ce 140.1 Pr Nd Pm Ind. 140.1 prasecdymium neodymium promethium scrium	63 E u	152.0	europium
S8 59 60	62 Sm	150.4	samarium
58 Ce 140.1 Praction praseodymium nee	61 Pm	(145)	promethium
58 Ce 140.1	PN 09	144.2	neodymium
	59 Pr	140.9	praseodymium
57 La 138.9 Ianthanum	58 Ce	140.1	cerium
	57 La	138.9	lanthanum

9
5
.5
9
<u>:-</u>
3
5
9
7
4
Ş
1
٩
- 5
100
::
1
6
2
+
-
2-
Ē
-
E
F
F
F
F
E
E
E
E
E
E
E
E
F
F
F
E
E
E
E
E
E
E
F

2. Chemical relationships

Name	Formula
number of moles of a substance	$n = \frac{m}{M}$

3. Physical constants and standard values

Name	Symbol	Value
Avogadro constant	$N_{\rm A}$ or L	$6.02 \times 10^{23} \text{ mol}^{-1}$

4. Metric (including SI) prefixes

Metric (including SI) prefixes	Scientific notation	Multiplying factor
giga (G)	10 ⁹	1 000 000 000
mega (M)	10 ⁶	1 000 000
kilo (k)	10 ³	1000
deci (d)	10^{-1}	0.1
centi (c)	10^{-2}	0.01
milli (m)	10^{-3}	0.001
micro (μ)	10^{-6}	0.000001
nano (n)	10 ⁻⁹	0.000000001
pico (p)	10 ⁻¹²	0.000000000001

END OF DATA BOOKLET

Trial Examination 2021

VCE Chemistry Unit 1

Written Examination

Multiple-choice Answer Sheet

Teacher's Name:	
Instructions	
Use a pencil for all entries. If you make a mistake, eras Marks will not be deducted for incorrect answers. No mark will be given if more than one answer is compared to the comp	
All answers must be completed like this example:	B C D

Use pencil only

1	Α	В	С	D
2	Α	В	С	D
3	Α	В	С	D
4	Α	В	С	D
5	Α	В	С	D
6	Α	В	С	D
7	Α	В	С	D
8	Α	В	С	D
9	Α	В	С	D
10	Α	В	С	D

Student's Name:

11	Α	В	С	D
12	Α	В	С	D
13	Α	В	С	D
14	Α	В	С	D
15	Α	В	С	D
16	Α	В	С	D
17	Α	В	С	D
18	Α	В	С	D
19	Α	В	С	D
20	Α	В	С	D

Neap[®] Education (Neap) Trial Exams are licensed to be photocopied or placed on the school intranet and used only within the confines of the school purchasing them, for the purpose of examining that school's students only. They may not be otherwise reproduced or distributed. The copyright of Neap Trial Exams remains with Neap. No Neap Trial Exam or any part thereof is to be issued or passed on by any person to any party inclusive of other schools, non-practising teachers, coaching colleges, tutors, parents, students, publishing agencies or websites without the express written consent of Neap.