

CHEMISTRY 2021

Unit 3 Key Topic Test 3 - Redox

Recommended writing time*: 45 minutes Total number of marks available: 50 marks

SOLUTIONS

2021 CHEMISTRY KEY TOPIC TEST

SECTION A: Multiple-choice questions (1 mark each)

Question 1

Answer: A

Explanation:

Nitrogen is a free element and has an oxidation number of zero while in ammonia, hydrogen has an oxidation number of +1, so nitrogen must have an oxidation number of -3.

Question 2

Answer: B

Explanation:

Al \rightarrow Al³⁺ + 3e⁻ Fe³⁺ + 3e⁻ \rightarrow Fe Al undergoes oxidation so acts as the reductant. Fe³⁺ undergoes reduction (is reduced).

Question 3

Answer: D

Explanation:

Difference in E^0 values = 0.45 - 0.34 = 0.79 V.

Question 4

Answer: D

Explanation:

 C^{3+} is the strongest oxidant so it would react with the other 2 reductants (A and B).

2021 CHEMISTRY KEY TOPIC TEST

Question 5

Answer: D

Explanation:

 A^+ would undergo reduction (it is the stronger oxidant) and therefore decreases in concentration. B would undergo oxidation (it is the stronger reductant) and therefore increases the concentration of B^{2+} .

Question 6

Answer: A

Explanation:

OH is a stronger reductant than I and would therefore react with I_2 .

Question 7

Answer: A

Explanation:

Silver is a weaker reductant than Cu so would not react with a Cu^{2+} solution.

Question 8

Answer: C

Explanation:

 $Cr_2O_7^{2-}_{(aq)} + 14H^+_{(aq)} + 6e \rightarrow 2Cr^{3+}_{(aq)} + 7H_2O_{(l)}$ 7H₂O to balance the oxygen. 14H⁺ to balance the hydrogen. 12+ charge on the left and 6+ charge on the right, so 6 electrons on the left are required.

Question 9

Answer: D

Explanation:

 $\frac{\text{Ni}^{2+}(aq) + 2e^{-} \rightleftharpoons \text{Ni}(s)}{\text{Co}^{2+}(aq) + 2e^{-} \rightleftharpoons \text{Co}(s)}$ $\frac{\text{Cd}^{2+}(aq) + 2e^{-} \rightleftharpoons \text{Cd}(s)}{\text{Fe}^{2+}(aq) + 2e^{-} \rightleftharpoons \text{Fe}(s)}$

Cobalt metal would react with Ni^{2+} but not Fe^{2+} .

Question 10

Answer: A

Explanation:

The Mg is a stronger reductant than zinc and copper, so would react with solutions of zinc and copper.

SECTION B: Short-answer questions

Question 1

a. i. +4 ii. +7	
	2 marks
b. $2H_2O_{(1)} + MnO_{2(s)} \rightarrow MnO_4^{-}_{(aq)} + 4H^{+}_{(aq)} + 3e^{-}$	2 marks Total 4 marks
Question 2 a. i. S ii. H ₂ SO ₄	
b. i. $2H_2O + S \rightarrow SO_2 + 4H^+ + 4e^-$ ii. $H_2SO_4 + 2H^+ + 2e^- \rightarrow SO_2 + 2H_2O$	2 marks
c. $2H_2SO_4 + S \rightarrow 3SO_2 + 4H_2O$	2 + 2 = 4 marks
	2 marks Total 8 marks
Question 3 a. From 0 to +3	
b. $Fe_{(s)} \rightarrow Fe^{3+}_{(s)} + 3e^{-}_{(s)}$	1 mark
c. $O_{2(0)} + 4e^{-} \rightarrow 2O^{2-}(s)$	1 mark
d. $4Fe_{(c)} + 3O_{2(g)} \rightarrow 2Fe_2O_{3(c)}$	1 mark
	1 mark Total 4 marks
Question 4 a. i. $Y \rightarrow Y^{3+} + 3e^{-}$ ii. $X^{2+} + 2e^{-} \rightarrow X$	
b. $3X^{2+} + 2Y \rightarrow 3X + 2Y^{3+}$	2 marks
c. i. +	1 marks
ii. cathode	2 marks

- **d. i.** Ni ii. Al
- e. The electrochemical series is valid under standard conditions* of 1atm pressure, 25°C and using 1M solutions.*

f. The salt bridge maintains an overall neutral charge in each cell by allowing ions to move between the two half cells. KNO₃ is a suitable chemical.

> 2 marks Total 11 marks

2 marks

2 marks

1 mark

Question 5 a. Mn³⁺

b. i. 1.43V **ii.** Mn³⁺

iii. The H₂S is bubbled over a platinum electrode.

c.	НСООН	1 + 1 + 2 = 1 marks
d	$H_{2}SO_{2}$ or Mn^{2+}	1 mark
u.		1 mark
e.	H_2SO_3 or Mn^{2+}	1 mark
Qu	estion 6	Total 8 marks
a.	i. C ²⁺	
	ii. C	1 + 1 = 2 marks
b.	i. C^{2+}/C and A^{2+}/A	
	n. C	1 + 1 = 2 marks
c.	С, В, А	
		1 mark
		Total 5 marks

H₂S gas

1 + 1 + 2 = 4 marks

l otal 5 marks