Student Name:

CHEMISTRY 2021

Unit 3 Key Topic Test 6 – Equilibrium Systems

Recommended writing time*: 45 minutes Total number of marks available: 50 marks

QUESTION BOOK

* The recommended writing time is a guide to the time students should take to complete this test. Teachers may wish to alter this time and can do so at their own discretion.

Conditions and restrictions

- Students are permitted to bring into the room for this test: scientific calculator, pens, pencils, highlighters, erasers, sharpeners and rulers.
- Students are NOT permitted to bring into the room for this test: blank sheets of paper and/or white out liquid/tape.

Materials supplied

• Question and answer book of 11 pages.

Instructions

- Print your name in the space provided on the top of the front page.
- All written responses must be in English.

Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic communication devices into the room for this test.

SECTION A – Multiple-choice questions

Instructions for Section A

Answer all questions.

Choose the response that is **correct** for the question.

A correct answer scores 1, an incorrect answer scores 0.

Marks are **not** deducted for incorrect answers.

If more than one answer is completed for any question, no mark will be given.

Question 1

Haemoglobin (Hb) reacts with oxygen to form oxyhaemoglobin and will also react with carbon monoxide to form carboxyhaemoglobin.

 $Hb_{4(aq)} + 4O_{2(g)} \rightleftharpoons Hb_{4(aq)}$ $Hb_{4(aq)} + 4CO_{(g)} \rightleftharpoons Hb_{4(CO)}_{4(aq)}$

Carbon monoxide poisoning occurs because;

- A. K_c for the reaction between Hb and oxygen is about 20 000 times K_c for the reaction between Hb and CO
- **B.** The equilibrium between Hb and CO lies further to the right than the equilibrium between Hb and O_2
- C. CO can bond to Hb just as easily as O_2 can bond to Hb
- **D.** $Hb_4(CO)_4$ is much more soluble in blood plasma than Hb_4O_8

Question 2

For the chemical reaction

 $Co(H_2O)_6^{2+}(aq) + 4Cl_{(aq)} \leftrightarrow CoCl_4^{2-}(aq) + 6H_2O_{(l)}$

 $Co(H_2O)_6$ is pink while $CoCl_4^{2-}$ is blue.

When the solution is heated the reaction, mixture turns blue. It can be concluded that;

- **A.** The reaction is exothermic and K increases
- **B.** The reaction is endothermic and K decreases
- C. The reaction is exothermic and K stays the same
- **D.** The reaction is endothermic and K increases

The following TWO questions refer to the information below;

The decomposition of carbonyl fluoride, COF_2 is shown by the equation below: $COF_{2(g)} \rightleftharpoons CO_{(g)} + F_{2(g)} \quad \Delta H = +507 k Jmol^{-1}$

The graph below represents the concentration of each species under a range of conditions.

Question 3

The change in the graph at t = 15 minutes and t = 30 minutes is due to;

- A. A decrease in pressure and the addition of COF_2
- **B.** An increase in temperature and the addition of COF_2
- C. The removal of F_2 and a decrease in temperature
- **D.** The removal of F_2 and an increase in temperature

Question 4

The system first reached equilibrium at approximately t =

- **A.** 0 seconds
- **B.** 10 seconds
- C. 15 seconds
- **D.** 20 seconds

Question 5

The preparation of sulphur trioxide from sulphur dioxide and oxygen is shown by the equation below:

 $2SO_{2(g)} + O_{2(g)} \quad \rightleftharpoons \quad 2SO_{3(g)} \quad \Delta H = -196 \text{ kJ mol}^{-1}$

To maximize the yield of SO₃, the reaction conditions chosen should be;

- A. 100° C, 1 atm pressure
- **B.** 100°C, 200atm pressure
- C. 800°C, 200atm pressure
- **D.** 800°C, 1atm pressure

Question 6

Ammonia is produced by the reaction of H_2 with N_2 according to;

 $3H_{2(g)} + N_{2(g)} \xrightarrow{\sim} 2NH_{3(g)}$

Heat is released during the reaction. The equilibrium can be shifted towards the right by;

- **A.** The addition of a catalyst
- **B.** Decreasing the temperature
- C. The addition of an inert gas such as Argon
- **D.** Decreasing the pressure

The following information refers to the next 2 questions.

The reaction $PCl_{3(g)} + Cl_{2(g)} \implies PCl_{5(g)}$ is exothermic.

Question 7

An extra amount of Cl_2 is added to the mixture without changing the pressure or temperature. As a result;

- A. The value of K_c will increase
- **B.** The concentration of PCl₃ will increase
- **C.** The equilibrium will shift to the left
- **D.** The rate of reaction will increase

Question 8

Neon is added to the mixture without changing the volume or temperature. The total pressure in the container is increased. As a result;

- A. The rate of reaction will increase
- **B.** The concentration of PCl_5 will decrease
- C. The equilibrium will shift to the right
- **D.** There will be no change in equilibrium position

Question 9

The reaction $CaCO_{3(s)}$ $CaO(s) \iff + CO_{2(g)}$ occurs when you heat limestone. The reaction is endothermic. To shift the equilibrium to the right, you could;

- A. Carry out the reaction in a well ventilated environment
- **B.** Increase the pressure
- **C.** Reduce the temperature
- **D.** Grind up the limestone into a fine powder

Question 10

The equation for the reaction between ethyne and hydrogen is

 $C_2H_2(g) + 2H_2(g) \rightleftharpoons C_2H_6(g) \Delta H = -355 \text{ kJ mol-1}$

At 150°C, the value of K is 248 M^{-2}

A sample of C₂H₆ is added to an empty reactor.

When the mixture comes to equilibrium at 150°C.

A. The concentration of C_2H_2 is more than the concentration of C_2H_6

B. The concentration of C_2H_2 is equal to the concentration of H_2

C. The concentration of C_2H_2 is equal to the concentration of C_2H_6

D. The concentration of C_2H_2 is half the concentration of H_2

SECTION B - Short-answer questions

Instructions for Section B

Questions must be answered in the spaces provided in this book. To obtain full marks for your responses you should

• Cive simplified answers with an appropriate number of sign

• Give simplified answers with an appropriate number of significant figures to all numerical questions; unsimplified answers will not be given full marks.

• Show all workings in your answers to numerical questions. No credit will be given for an incorrect answer unless it is accompanied by details of the working.

Make sure chemical equations are balanced and that the formulas for individual substances

include an indication of state; for example, H₂(g); NaCl(s)

Question 1

When Fe^{3+} ions are mixed with SCN^{-} ions, $\text{Fe}(\text{SCN})^{2+}$, which is red in colour, is formed. The reaction can be represented by;

 $\operatorname{Fe}^{3+}_{(aq)} + \operatorname{SCN}_{(aq)} \rightleftharpoons \operatorname{Fe}(\operatorname{SCN})^{2+}_{(aq)}$

The forward reaction is endothermic

a. Complete the following table.

Action taken	Equilibrium shift (left or right)	Effect on reaction rate (increase or decrease)	Effect on the value of K (increase, no change or decrease)
Increase in temperature			
Addition of Fe ³⁺ ions			
Removal of SCN ⁻ ions			
Addition of water			

12 marks

b. The equilibrium constant for the reaction is 138.0 M^{-1} at 25°C. If the concentration of Fe(SCN)²⁺ is 1.00M, determine the concentration of Fe³⁺.

3 marks Total 15 marks

Question 2

The graph below shows the production of methanol from carbon monoxide and hydrogen according to;

- **a.** As the temperature is increased, what happens to the;
- **i.** Rate of formation of methanol

ii. Equilibrium yield of methanol.

1 + 1 = 2 marks

b. Is the reaction exothermic or endothermic?

1 mark

c. The volume of the container is reduced, increasing the pressure. By referring to Le Chatelier's Principle, explain what would happen to the yield of methanol.

2 marks

d. A catalyst is added to the reaction mixture, redraw the line for the 400K reaction mixture on the above graph to show the effect of the catalyst.

1 mark Total 6 marks

Question 3

In the production of nitric acid, a key step in the process involves the conversion of NO to NO_2 as shown below;

$$2NO_{(g)} + O_{2(g)} \rightleftharpoons 2NO_{2(g)}$$

Heat is released during the reaction.

a. Describe how the rate and yield of NO_2 is affected by temperature and pressure.

4 marks

b. Discuss a compromise that might need to be made when determining both the temperature and pressure of the reaction.

2 marks

c. A catalyst can be used to speed up the reaction. Would you most likely choose a heterogeneous catalyst or homogeneous catalyst? Why?

d. If the container is 1.0 litre in size, calculate the value of K_c at the 28 minute mark.

e. If 2.0 mol of AB_3 is removed at the 32 minute mark,

- i. How will the equilibrium constant change?
- ii. Will the concentration of B_2 increase or decrease?

2 marks Total 7 marks

Question 5

For the reaction

$$\text{ClNO}_{2(g)} + \text{NO}_{(g)} \rightleftharpoons \text{NO}_{2(g)} + \text{ClNO}_{(g)}$$

a. When 3.5mol of ClNO₂ is mixed with 1.5mol of NO, 0.20 mol of NO₂ is formed. Determine the value of Kc.

4 marks

b. If the concentration of all species is doubled, which way would the equilibrium shift?

1 mark Total 5 marks

END OF KEY TOPIC TEST

2 marks