

CHEMISTRY 2021

Unit 3 Key Topic Test 6 – Electrolysis

Recommended writing time*: 45 minutes
Total number of marks available: 50 marks

SOLUTIONS

© TSSM 2021 Page 1 of 6

SECTION A: Multiple-choice questions (1 mark each)

Question 1

Answer: A

Explanation:

Reduction of water occurs at the cathode. $2H_2O + 2e^- \rightarrow H_2 + 2OH^-$ Therefore, the pH would increase.

Question 2

Answer: A

Explanation:

$$Q = It = 1 x 60 x 10 = 600 C$$

$$n = Q/96500 = 600/96500 = 0.00622 mol$$

$$n(Cr) = n(e-)/3 = 0.00207 mol$$

$$m = n x M = 0.00207 x 52.0 = 0.1078 g$$

Question 3

Answer: C

Explanation:

Overall equation is; $2H_2 + O_2 \rightarrow 2H_2O$, so the ratio of $H_2:O_2$ is 2:1

Question 4

Answer: B

Explanation:

The ratio of the mole of solid to the mole of electrons is 1:2. So the solid must form +2 ions, which must be magnesium.

© TSSM 2021 Page 2 of 6

2021 CHEMISTRY KEY TOPIC TEST

Question 5

Answer: C

Explanation:

In an electrolytic cell, the reactants can mix as they do not spontaneously react with each other. However, the products must be separated as they often react with each other.

Question 6

Answer: D

Explanation:

The Pb electrode remains negative during both discharging and charging. Responses A, B and C are correct for only charging or discharging.

Question 7

Answer: A

Explanation:

```
oxidation 2\Gamma \rightarrow I_2 + 2e-
reduction 2e^- \rightarrow H_2 + 2OH^-
Full equation 2\Gamma + H_2O \rightarrow I_2 + H_2 + 2OH^-
So, n(H_2) = \frac{1}{2}n(\Gamma)
```

Question 8

Answer: B

Explanation:

```
\begin{split} n &= m \ / \ M = 100 \ 000/27 {=} 3703 \\ n(CO_2) &= 3/4 n(Al) = 2777 \\ m(CO_2) &= n \ x \ M = 2777 x 44 = 122 \ 000g = 122 \ kg \end{split}
```

© TSSM 2021 Page 3 of 6

2021 CHEMISTRY KEY TOPIC TEST

Question 9

Answer: D

Explanation:

As carbon is involved in the reaction at the anode, the carbon anode needs to be replaced. The cell would need to be shut down for this to happen.

Question 10

Answer: B

Explanation:

A molten electrolyte would be required as water will react in preference to aluminium ions. (Water is a stronger oxidant than Al^{3+})

© TSSM 2021 Page 4 of 6

SECTION B: Short-answer questions

Question 1

a. i.
$$Pb_{(s)} \rightarrow Pb^{2+}_{(aq)} + 2e^{-}$$

ii. $Pb^{2+}_{(aq)} + 2e^{-} \rightarrow Pb_{(s)}$

2 marks

b. i.
$$H_2O_{(1)} \rightarrow O_{2(g)} + 4H^+_{(aq)} + 4e^-$$

ii. $Pb^{2+}_{(aq)} + 2e^- \rightarrow Pb_{(s)}$

2 marks

c. i.
$$2Cl_{(l)} \rightarrow Cl_{2(g)} + 2e^{-1}$$

ii. $Li_{(l)}^{+} + e^{-1} \rightarrow Li_{(s)}$

2 marks

Total 6 marks

Question 2

a. i.
$$2H_2O_{(1)} + 2e^- \rightarrow H_{2(g)} + 2OH_{(aq)}$$

ii. $2Cl_{(aq)}^- \rightarrow Cl_{2(g)} + 2e^-$

1 + 1 = 2 marks

b. i. Positive

a. H₂

1 + 1 = 2 marks

c. The membrane allows movement of ions* such as Na^{+*} and prevents the products from mixing.* (any 2 *)

2 marks

4 marks

Total 10 marks

Question 3

a. i.
$$Ni_{(s)} \rightarrow Ni^{2+}_{(aq)} + 2e^{-}$$

ii. $Ni^{2+}_{(aq)} + 2e^{-} \rightarrow Ni_{(s)}$

1 + 1 = 2 marks

b.
$$n = 15\ 000\ /\ 96500 = 0.1554\ mol$$
 $n(Ni) = n(e-)\ /\ 2 = 0.1554\ /\ 2 = 0.0777\ mol$ $m = n\ x\ M = 0.0777\ x\ 58.7 = 4.56g$

3 marks

 $\mathbf{c.}$ 1.00M (Ni²⁺ is produced at the anode and consumed at the cathode)

1 mark

d.
$$n(Ni^{2+}) = 0.0777 \text{ mol}$$

 $c = n/V = 0.0777 / 0.100 = 0.777 \text{ M} *$
Change in concentration = $1.00 - 0.777 = 0.223 \text{ M}*$

2 marks

Total 8 marks

© TSSM 2021 Page 5 of 6

Question 4

a. Pb

1 mark

b. i. Water is a stronger oxidant than Al³⁺.

ii.
$$Pb^{2+}_{(aq)} \rightarrow 2e^{-} \rightarrow Pb_{(s)}$$

 $Fe^{2+}_{(aq)} + 2e^{-} \rightarrow Fe_{(s)}$
 $2H_2O_{(l)} + 2e^{-} \rightarrow H_{2(g)} + 2OH_{(aq)}$

1 + 3 = 4 marks Total 5 marks

Question 5

a.

Design Aspect	Workable or not workable
2 compartments separated by a solid barrier	Not workable
4M MgCl ₂ electrolyte to produce Cl ₂ gas at the anode	Workable
4M MgCl ₂ electrolyte to produce magnesium metal at the cathode	Not workable
Power source producing 6 volts	Workable
Iron electrodes	Not workable

5 marks

You need a porous rather than a solid barrier* so ions can move between the two half cells and maintain electrical neutrality.*

Magnesium is not produced as water reacts* in preference to the Mg^{2+} as water is a stronger oxidant.*

Iron cannot be used as iron reacts* instead of Cl⁻ as iron is a stronger oxidant than Cl⁻.*

6 marks Total 11 marks

© TSSM 2021 Page 6 of 6