Neap

Trial Examination 2022

VCE Chemistry Unit 3

Written Examination

Question and Answer Booklet

Reading time: 15 minutes Writing time: 1 hour 30 minutes

Student's Name:

Teacher's Name:

Structure of booklet				
Section	Number of questions	Number of questions to be answered	Number of marks	
A	20	20	20	
В	6	6	55	
			Total 75	

Students are permitted to bring into the examination room: pens, pencils, highlighters, erasers, sharpeners, rulers and one scientific calculator.

Students are NOT permitted to bring into the examination room: blank sheets of paper and/or correction fluid/tape.

Materials supplied

Question and answer booklet of 18 pages

Data booklet

Answer sheet for multiple-choice questions

Instructions

Write your **name** and your **teacher's name** in the space provided above on this page, and on the answer sheet for multiple-choice questions.

Unless otherwise indicated, the diagrams in this booklet are **not** drawn to scale.

All written responses must be in English.

At the end of the examination

Place the answer sheet for multiple-choice questions inside the front cover of this booklet.

You may keep the data booklet.

Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic devices into the examination room.

Students are advised that this is a trial examination only and cannot in any way guarantee the content or the format of the 2022 VCE Chemistry Units 3&4 Written Examination.

Neap[®] Education (Neap) Trial Exams are licensed to be photocopied or placed on the school intranet and used only within the confines of the school purchasing them, for the purpose of examining that school's students only. They may not be otherwise reproduced or distributed. The copyright of Neap Trial Exams remains with Neap. No Neap Trial Exam or any part thereof is to be issued or passed on by any person to any party inclusive of other schools, non-practising teachers, coaching colleges, tutors, parents, students, publishing agencies or websites without the express written consent of Neap.

SECTION A - MULTIPLE-CHOICE QUESTIONS

Instructions for Section A

Answer **all** questions in pencil on the answer sheet provided for multiple-choice questions.

Choose the response that is **correct** or that **best answers** the question.

A correct answer scores 1; an incorrect answer scores 0.

Marks will not be deducted for incorrect answers.

No marks will be given if more than one answer is completed for any question.

Unless otherwise indicated, the diagrams in this booklet are not drawn to scale.

Question 1

Which one of the following statements is correct when comparing a galvanic cell with an electrolytic cell?

- **A.** The anode is positive in a galvanic cell only.
- **B.** Oxidation occurs at the negative electrode in both types of cell.
- C. Reduction occurs at the cathode in an electrolytic cell only.
- **D.** Only an electrolytic cell uses a non-spontaneous redox reaction.

Use the following information to answer Questions 2 and 3.

The following reaction is used in a secondary cell at high temperature to produce electrical energy.

 $2Na(l) + S(l) \rightarrow Na_2S(l)$

Question 2

Which one of the following energy transformations does not occur at any time in the operation of the cell?

- **A.** chemical energy to electrical energy
- **B.** chemical energy to heat energy
- C. electrical energy to chemical energy
- **D.** heat energy to chemical energy

Question 3

Which one of the following features enables the cell to be recharged?

- A. Two electrodes made from an inert material are used.
- **B.** The molten electrolyte allows ions to flow easily through the cell.
- **C.** The products of the reaction remain in contact with the electrodes.
- **D.** Electrical energy is produced using a spontaneous redox reaction.

Use the following information to answer Questions 4–6.

Information relating to a particular chemical reaction is shown in the following table.

Activation energy	Enthalpy change
250 kJ mol^{-1}	$+206 \text{ kJ mol}^{-1}$

Question 4

The following statements refer to this chemical reaction.

- I The reaction is exothermic or heat-consuming.
- II The reaction is not likely to be spontaneous at room temperature.
- III The energy of the products is greater than the energy of the reactants.
- IV Heating the reaction will lower the activation energy.

Which of the statements are correct?

- A. I and II only
- **B.** II and III only
- C. I, II and III only
- **D.** II, III and IV only

Question 5

Which of the values in the table would change if a catalyst were introduced into the reaction?

- A. activation energy only
- **B.** enthalpy change only
- **C.** both activation energy and enthalpy change
- **D.** neither activation energy nor enthalpy change

Question 6

What is the activation energy of the uncatalysed reverse reaction?

- **A.** -250 kJ mol^{-1}
- **B.** 44 kJ mol^{-1}
- **C.** 250 kJ mol^{-1}
- **D.** 456 kJ mol^{-1}

Use the following information to answer Questions 7–9.

Carbon monoxide gas, CO, can be used as a fuel but is highly dangerous to humans if not used with great care.

Question 7

CO gas is classified as a fuel because all fuels are chemicals that

- A. react with oxygen to produce energy in an exothermic reaction.
- **B.** contain carbon and will burn to produce heat energy.
- C. are comprised of carbon and oxygen and will burn in air.
- **D.** contain energy that can be released relatively easily.

Question 8

CO gas can be produced during several reactions.

Which one of the following pairs of reactants from balanced equations is most likely to produce CO gas as a product?

- A. $C + O_2 \rightarrow$
- **B.** $2CH_4 + 3O_2 \rightarrow$
- C. $C_3H_8 + 5O_2 \rightarrow$
- **D.** $2C_8H_{18} + 25O_2 \rightarrow$

Question 9

When carbon monoxide poisoning occurs in humans, a substance known as carboxyhaemoglobin $(Hb_4(CO)_4)$ is formed in an equilibrium reaction.

Which one of the following best explains why treating a victim of carbon monoxide poisoning with pure oxygen gas, O_2 , is effective?

- A. O_2 gas has a greater affinity for haemoglobin (Hb) than CO gas does.
- **B.** Any CO gas in the body reacts with O_2 to form CO_2 gas, which is exhaled.
- C. The equilibrium reaction that forms $Hb_4(CO)_4$ moves towards the reactants when O_2 levels are high.
- **D.** O_2 decreases the value of the equilibrium constant (K_c) of the reaction that forms Hb₄(CO)₄.

Use the following information to answer Questions 10 and 11.

The set-up for the industrial production of the metal calcium is shown in the following simplified diagram.

Question 10

The set-up uses a graphite casing. Some of the properties of graphite are as follows.

- I electrical conductivity
- II high melting point and boiling point
- III unreactive under normal conditions

Which of the properties of the graphite casing are used in the production of calcium?

- A. I and II only
- **B.** II and III only
- C. I and III only
- **D.** I, II and III

Question 11

A molten electrolyte is used in this electrolysis because

- A. aqueous solutions are too bulky and expensive to transport.
- **B.** melting ionic substances allows ions to be present in the electrolyte.
- C. electrolysis of aqueous solutions of calcium ions would not produce calcium.
- **D.** water is a stronger reductant than calcium and so calcium would not be formed.

Question 12

25.0 mL of ethyne, C₂H₂, at standard laboratory conditions (SLC) is burnt in excess oxygen.

What is the maximum number of kilojoules of energy that could be released?

- **A.** 1.31
- **B.** 1.57
- **C.** 806
- **D.** 967

Use the following information to answer Questions 13 and 14.

At a particular temperature, $T_1^{\circ}C$, the equilibrium constant (K_c) for the following exothermic reaction is 0.95 M⁻¹.

$$2NO(g) + O_2(g) \rightleftharpoons 2NO_2(g)$$

Question 13

A sample of nitric oxide gas, NO, and oxygen gas, O_2 , was placed in a sealed container and allowed to reach equilibrium at $T_1^{\circ}C$. When the volume of the container was then doubled but the temperature was not changed, the concentration of the gases in the mixture instantly halved.

Which of the following statements is correct?

- **A.** When the gas mixture reaches equilibrium again, the K_c will be 0.48 M⁻¹.
- **B.** When the gas mixture reaches equilibrium again, the K_c will be 0.95 M⁻¹.
- **C.** When the gas mixture reaches equilibrium again, the K_c will be 1.9 M⁻¹.
- **D.** The value of the K_c can only be determined if the concentration of each gas is known.

Question 14

What is the magnitude of the K_c for the reaction NO₂(g) \rightleftharpoons NO(g) + $\frac{1}{2}O_2(g)$ at T₁°C?

- **A.** 0.48
- **B.** 0.95
- **C.** 1.03
- **D.** 1.05

Question 15

Which one of the following descriptions applies to biodiesel and not to petrodiesel?

- A. is classified as a transport fuel, which is not renewable
- **B.** absorbs almost no moisture from the surrounding air
- C. exhibits a decrease in viscosity when temperatures are lowered
- **D.** may have problems with flow along fuel lines in cold weather

Use the following information to answer Questions 16 and 17.

Hydrogen gas, H₂, can be produced using different methods, including the following.

- I electrolysis of sea water: $2H_2O(l) \rightarrow 2H_2(g) + O_2(g)$
- II steam reforming of methane: $CH_4(g) + 2H_2O(g) \rightarrow CO_2(g) + 4H_2(g)$

Question 16

Which one of the following statements about these methods of production is correct?

- A. Method I has no environmental impact because sea water is regenerated.
- **B.** Method I is unsustainable as electricity for electrolysis can only be produced from fossil fuels.
- C. Method II could be sustainable if the methane were produced from biogas.
- **D.** Method II damages the environment as it produces a greenhouse gas.

Question 17

Petrol engines in cars can be modified so that H_2 gas can be used as fuel. H_2 gas can also be used in fuel cells fitted into specially designed cars.

Which one of the following is a significant issue associated with the use of H₂ gas in cars?

- A. safety concerns due to mixtures of H_2 gas and air being explosive
- **B.** the low heat of combustion of H_2 gas compared to other fuels
- C. the requirement of very high temperature or low pressure to store a useful amount of fuel
- **D.** the inability to ever produce H_2 gas on a large scale for transport purposes

Question 18

The Maxwell-Boltzmann distribution curve for the reactant gas particles at a set temperature for a particular reaction is shown below.

If the temperature of the gas particles were lowered, the height of the curve would

- A. not change, but the shaded area would increase.
- **B.** decrease and the shaded area would increase.
- C. not change, but the shaded area would decrease.
- **D.** increase and the shaded area would decrease.

Use the following information to answer Questions 19 and 20.

The following reaction was used in an investigation into the factors affecting the rate of reaction.

$$Zn(s) + 2HCl(aq) \rightarrow ZnCl_2(aq) + H_2(g)$$

Four numbered test tubes were used in the investigation. Their contents are shown in the table below.

Test tube	1	2	3	4
Contents	5 mL of 2 M HCl(aq) + 5 mL of water + 1 g zinc granules	10 mL of 2 M HCl(aq) + 1 g zinc granules	10 mL of 2 M HCl(aq) + 1 g zinc powder	10 mL of 2 M HCl(aq) + 1 g zinc powder
Initial temperature of contents	20°C	20°C	30°C	20°C

Question 19

Which one of the following shows the test tubes in order of decreasing rate of reaction of zinc, Zn, with hydrochloric acid, HCl?

- **A.** 3, 4, 2, 1
- **B.** 1, 2, 4, 3
- **C.** 3, 1, 2, 4
- **D.** 1, 2, 3, 4

Question 20

Various factors in the investigation could be measured over time.

Which one of the following measured factors could **not** be used to determine the rate of reaction?

- A. volume of the liquid contents
- **B.** temperature of the liquid contents
- **C.** volume of the hydrogen gas, H_2 , evolved
- **D.** mass of the test tube and contents

END OF SECTION A

SECTION B

Instructions for Section B

Answer **all** questions in the spaces provided.

Give simplified answers to all numerical questions, with an appropriate number of significant figures; unsimplified answers will not be given full marks.

Show all working in your answers to numerical questions; no marks will be given for an incorrect answer unless it is accompanied by details of the working.

Ensure chemical equations are balanced and that the formulas for individual substances include an indication of state, for example, $H_2(g)$, NaCl(s).

Unless otherwise indicated, the diagrams in this booklet are **not** drawn to scale.

Question 1 (9 marks)

An important step in the industrial production of sulfuric acid is the oxidation of sulfur dioxide gas, SO_2 , which occurs according to the following equation.

$$2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$$
 $\Delta H = -197 \text{ kJ mol}^{-1}$

a. Using collision theory, outline the conditions of pressure that would produce the fastest rate of reaction.

2 marks

b. Using Le Chatelier's principle, explain the conditions of pressure that would produce the highest yield.

2 marks

c. Discuss the reasons why the condition of pressure used for the economical industrial manufacture of sulfuric acid is atmospheric pressure.

2 marks

d.	The table below shows three features of the industrial process that is used for the oxidation
	of sulfur dioxide.

Explain why each feature is used.

3 marks

Feature	Explanation
The catalyst $V_2O_5(s)$ is spread out over a number of shallow trays.	
Reactant gases are passed progressively over each catalyst tray.	
Reactant gases are cooled after being passed over each catalyst tray before being passed over the next catalyst tray.	

Question 2 (9 marks)

i.

a. The following galvanic cell was constructed under standard laboratory conditions (SLC).

Write the half-cell equation for the reaction that occurs at the cathode.

 ii.
 Write the balanced ionic equation for the overall reaction of the cell.
 2 marks

 iii.
 Determine the standard electrode potential for the following half-cell reaction.
 1 mark

 $X^{2+}(aq) + e^- \rightarrow X^+(aq)$

iv. Do the positive ions in the salt bridge move towards half-cell 1 or half-cell 2 when the cell is operating?1 mark

1 mark

b. Some half-reactions from an electrochemical series are shown in the following table in no particular order.

Α	$MnO_{2}(s) + 4H^{+}(aq) + 2e^{-} \rightarrow Mn^{2+}(aq) + 2H_{2}O(l)$
В	$\operatorname{Cr}^{3+}(\operatorname{aq}) + 3e^{-} \rightarrow \operatorname{Cr}(s)$
C	$PbSO_4(s) + 2e^- \rightarrow Pb(s) + SO_4^{2-}(aq)$
D	$Au^{3+}(aq) + 3e^{-} \rightarrow Au(s)$

Under SLC, a series of cells was made by connecting different half-cells that use reactions A–D. The observations were recorded in the following table.

Cell	Half-cells	Observations
1	A and C	Half-cell C contained the anode.
2	A and D	The pH of the electrolyte in half-cell A decreased.
3	B and C	The concentration of chromium ions increased.

- **i.** Identify the weaker reductant in cell 1.
- **ii.** Identify the stronger oxidant in cell 2.
- iii. Using the letters A, B, C and D, list the half-reactions in order of decreasing standard electrode potential (E^0 value).

1 mark

1 mark

2 marks

Question 3 (10 marks)

An experiment was conducted to determine the value of Faraday's constant (*F*). An aqueous solution of iron(III) nitrate, $Fe(NO_3)_3$, was electrolysed using inert electrodes in a single beaker. During the electrolysis, a steady current of 3.216 A was passed for 15.0 minutes and 0.567 g of iron was deposited on one of the electrodes.

a. Explain why the electrolysis could be completed in a single beaker whereas a galvanic cell uses electrodes in two separate half-cells. 2 marks

i.	Is the polarity of the electrode on which the iron was deposited positive or negative?	1 mark
ii.	Write the balanced half-equation for the deposition of iron.	1 mark
i.	Calculate the amount of iron, in moles, deposited and, hence, determine the amount of electrons, in moles, passing through the cell.	2 marks
ii.	Calculate the amount of charge, in coulombs, that passed through the cell.	1 mark
iii.	Using the values calculated in parts c.i. and c.ii. , determine a value for Faraday's constant (the charge carried by one mole of electrons).	1 mark

d. The value for Faraday's constant obtained in part c.iii. is lower than the expected value.
 Identify and explain one possible source of error in the experiment that could account for the lower-than-expected value.
 2 marks

Copyright © 2022 Neap Education Pty Ltd

Question 4 (7 marks)

The simplified diagram below shows the design of a solid ceramic fuel cell that uses methane gas as the energy source. The electrodes used are metallic with embedded catalytic particles.

- **a.** At the cathode, oxygen gas in air is converted to oxide ions.
 - i. Write a half-equation for this reaction in the gaseous state. 1 mark
 - **ii.** Explain why the cathode is both metallic and catalytic.

- iii. Gaseous oxide ions travel through the ceramic matrix from the cathode to the anode. At the anode, oxide ions react with methane.Write a half-equation for this reaction in the gaseous state.2 marks
- b. The fuel cell is designed to be used for the domestic generation of electricity.
 Why is the cell more efficient at generating electricity compared to using methane in a power generation facility?
 2 marks

2 marks

Question 5 (9 marks)

An experiment involving gases X, Y and Z was conducted to investigate homogeneous equilibria. Initially, two reactant gases were injected into an empty, sealed 2.00 L vessel. The results are displayed in the following graph.

a. The reaction that occurred is represented by the following balanced chemical equation.

 $X(g) + Y(g) \rightleftharpoons 2Z(g)$

Explain how this equation could be deduced from the information shown in the graph. 2 marks

b. Calculate the value of the equilibrium constant (K_c) at 150 seconds.

3 marks

c.	The	equilibrium mixture was cooled at 200 seconds.				
	Exp	splain how it can be deduced that the forward reaction is endothermic.				
J		At 400 seconds 0.02 mel of ess 7 mes injected instantoneously into the messal				
a.	1.	At 400 seconds, 0.02 mol of gas Z was injected instantaneously into the vessel.				
		Draw this change on the graph on page 16.	1 mark			
	ii.	By 600 seconds, the system reached equilibrium again.				
		On the graph on page 16, draw the expected changes for gas Y between 400 and 600 seconds	1 mark			
		und ooo beconds.	1 mark			

Question 6 (11 marks)

When 6.154 g of the hydrocarbon benzene, C_6H_6 , is burnt in excess oxygen, O_2 , 258.0 kJ of energy	
is released.	

Write the thermochemical equation for the complete combustion of liquid C_6H_6 . In your answer, give the enthalpy change (AH) in kI mol ⁻¹	1 mark
In your answer, give the enthalpy enange (ΔH) in ky more .	+ mark
Calculate the volume of carbon dioxide (CO ₂) gas produced at 15.0°C and 1.15 atm	
when 3.98 mol of benzene is burnt completely in O_2 .	3 marks
Calculate the mass of liquid C_6H_6 that must be completely burnt to heat 500 g of water	
from 18.1°C to 87.6°C if the heating process is only 67% efficient.	4 marks

END OF QUESTION AND ANSWER BOOKLET

Trial Examination 2022

VCE Chemistry Unit 3

Written Examination

Data Booklet

Instructions

This data booklet is provided for your reference. A question and answer booklet is provided with this data booklet.

Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic devices into the examination room.

Neap[®] Education (Neap) Trial Exams are licensed to be photocopied or placed on the school intranet and used only within the confines of the school purchasing them, for the purpose of examining that school's students only. They may not be otherwise reproduced or distributed. The copyright of Neap Trial Exams remains with Neap. No Neap Trial Exam or any part thereof is to be issued or passed on by any person to any party inclusive of other schools, non-practising teachers, coaching colleges, tutors, parents, students, publishing agencies or websites without the express written consent of Neap.

Convright	C	2022	Nean	Education	Ptv	l td
Copyright	e	2022	Iveap	Luucation	i ty	Llu

1. Periodic table of the elements

$He^{4.0}$	18 Ar 39.9 argon	36 Kr ^{83.8} ^{rypton}	54 Xe 131.3 xenon	86 Rn ⁽²²²⁾	$\underset{(294)}{118}$		
P 19.0 F	17 Cl ^{35.5} chlorine	35 Br ^{79.9} k	53 I 126.9 iodine	$\mathop{\rm At}\limits_{(210)}^{85}$	117 TS (294) tennessine og	1 1 5:0 fium	03 J T 62) ncium
8 0 16.0 oxygen	S ^{32.1} sulfur	$\mathbf{Se}^{79.0}_{\mathrm{relenium}}$	$\mathbf{T}_{\mathbf{e}}^{52}$	$\stackrel{84}{P0}_{0}_{0}$	$\underset{(292)}{116}$	70 70 7 73.1 17 17 17 17 10 10 10	102 102 102 102 102 102 102 102 102 102
7 N 14.0 nitrogen	${\displaystyle \mathop{P}\limits_{{}^{30.1}}}^{15}$	$\mathbf{AS}_{74.9}^{33}$	51 Sb ^{121.8} ^{antimony}	$\overset{83}{\mathbf{Bi}}$	$\underset{(289)}{\overset{115}{\text{Mc}}}$	69 168.9 bullium	101 Md (258) ndelevium no
6 C carbon	14 15 14 15 14 15	${\displaystyle \mathop{\mathbf{Ge}}_{^{72.6}}}^{32}$	50 118.7 tin	$\overset{82}{Pb}_{^{207.2}}$	114 F1 (289) flerovium	68 Er 167.3 erbium	$\mathbf{F}_{\mathrm{fermium}}^{100}$
$\mathbf{B}^{10.8}$	$\mathbf{AI}_{aluminiun}^{13}$	31 Ga ^{69.7} gallium	114.8 114.8 114.8 114.8 114.8	81 T 204.4 thallium	$\underset{\rm minonium}{\overset{113}{113}}$	$\underset{homium}{67}$	$\underset{(252)}{99}$
		30 ZJ 30	Cd Cadmiun cadmiun	$H_{mercury}^{80}$	112 Cn (285) um coperniciu	$\overset{66}{Dy}_{dysprosium}$	$\mathop{Cf}\limits_{^{(251)}}^{98}$
	•	29 63.5 coppe	47 47 107.9 8 107.9	79 197.0 m	111 (272) (272) tium roentgen	$\overset{65}{\mathbf{Tb}}_{\overset{158.9}{\text{terbium}}}$	$\underset{\text{berkelium}}{97}$
ement		28.7 11 nicke	Pdd 9 9 106.2 106.2	Pt ² 195.1 m platinu	t DS ium darmstadt	$\overset{64}{64}$	$\mathop{Cm}\limits_{{}^{(247)}}^{96}$
mbol of ele me of eleci	-		1 1 1 102: 102: 102: 102:	17 22 192.	8 109 S M 109 100 100 100 100 100	$\mathop{Eu}_{152.0}_{0}$	$\mathop{Am}\limits_{(243)}^{95}$
79 Au ⁸ y ^{197.0} n ⁶		n n ^{55.5} ¹⁰⁰	c c b 44	e 36	h 10 (267 hassi	$\mathop{Sm}\limits_{\text{samarium}}^{62}$	$\Pr_{plutonium}^{94}$
number ic mass]	1 1 0.0 54 0.0 54 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	2 0.0 6 6 6 7 4 7 4	4 3.8 3.8 186 186	6 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 	$\underset{n \text{ promethium}}{\overset{61}{\text{ Pm}}}$	$\overset{93}{\overset{0}{0$
atomic r lative atomi		V 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9	1 1 1 1 1 1 1 1 1 1	3 0.9 alum tung	05 05 05 0 05 0 05 0 05 0 05 0 05 0 05	$\begin{bmatrix} 60\\ Nd\\ 144.2\\ neodymium \end{bmatrix}$	92 U ^{238.0} ^{uranium}
re		7.9 50 11 11 12 12 12 12 12 12 12 12 12 12 12	1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1	72 72 7 Hf 18.5 18.5 18.5 18.18 18.18	$\mathbf{f}^{(1)}_{(1)}$	59 Pr 140.9 praseodymiu	91 Pa 231.0 protactiniu
		Sc 445.0 tita	39 88.9 trium zirce	hanoids	inoids [2]	58 58 140.1 cerium	90 232.0 thoriun
$\mathbf{Be}_{^{9,0}}^{4}$	12 Mg ^{24.3} gnesium	$\mathbf{Ca}^{20}_{\mathrm{alcium}}$	38 Sr 87.6 rontium	56 Ba 137.3 lant varium	88 Ra 89 (226) act adium	${{{{ {L}}}{a}}\atop{{{ { { { { { { { { { { { { { { { { }}}}}}$	$\mathop{\rm Acc}_{\rm (227)}^{\rm 89}$
H hydrogen 3 6.9 be	11 Na ^{23.0} sodium m	19 X 39.1 potassium	37 Rb ^{85.5} ^{st.5} st	55 CS 132.9 caesium	$\mathbf{F}_{\mathbf{\Gamma}}^{87}$		

ChemU3_DS_2022

2. Electrochemical series

Reaction	Standard electrode potential (E^0) in volts at 25°C
$F_2(g) + 2e^- \rightleftharpoons 2F^-(aq)$	+2.87
$H_2O_2(aq) + 2H^+(aq) + 2e^- \rightleftharpoons 2H_2O(l)$	+1.77
$Au^+(aq) + e^- \rightleftharpoons Au(s)$	+1.68
$Cl_2(g) + 2e^- \rightleftharpoons 2Cl^-(aq)$	+1.36
$O_2(g) + 4H^+(aq) + 4e^- \rightleftharpoons 2H_2O(l)$	+1.23
$Br_2(l) + 2e^- \rightleftharpoons 2Br^-(aq)$	+1.09
$Ag^{+}(aq) + e^{-} \rightleftharpoons Ag(s)$	+0.80
$Fe^{3+}(aq) + e^{-} \rightleftharpoons Fe^{2+}(aq)$	+0.77
$O_2(g) + 2H^+(aq) + 2e^- \rightleftharpoons H_2O_2(aq)$	+0.68
$I_2(s) + 2e^- \rightleftharpoons 2I^-(aq)$	+0.54
$O_2(g) + 2H_2O(l) + 4e^- \rightleftharpoons 4OH^-(aq)$	+0.40
$Cu^{2+}(aq) + 2e^{-} \rightleftharpoons Cu(s)$	+0.34
$\operatorname{Sn}^{4+}(\operatorname{aq}) + 2e^{-} \rightleftharpoons \operatorname{Sn}^{2+}(\operatorname{aq})$	+0.15
$S(s) + 2H^{+}(aq) + 2e^{-} \rightleftharpoons H_2S(g)$	+0.14
$2\text{H}^+(\text{aq}) + 2e^- \rightleftharpoons \text{H}_2(g)$	0.00
$Pb^{2+}(aq) + 2e^{-} \rightleftharpoons Pb(s)$	-0.13
$\operatorname{Sn}^{2+}(\operatorname{aq}) + 2e^{-} \rightleftharpoons \operatorname{Sn}(s)$	-0.14
$Ni^{2+}(aq) + 2e^{-} \rightleftharpoons Ni(s)$	-0.25
$\operatorname{Co}^{2+}(\operatorname{aq}) + 2e^{-} \rightleftharpoons \operatorname{Co}(s)$	-0.28
$\operatorname{Cd}^{2+}(\operatorname{aq}) + 2e^{-} \rightleftharpoons \operatorname{Cd}(s)$	-0.40
$Fe^{2+}(aq) + 2e^{-} \rightleftharpoons Fe(s)$	-0.44
$Zn^{2+}(aq) + 2e^{-} \rightleftharpoons Zn(s)$	-0.76
$2H_2O(l) + 2e^- \rightleftharpoons H_2(g) + 2OH^-(aq)$	-0.83
$Mn^{2+}(aq) + 2e^{-} \rightleftharpoons Mn(s)$	-1.18
$Al^{3+}(aq) + 3e^{-} \rightleftharpoons Al(s)$	-1.66
$Mg^{2+}(aq) + 2e^{-} \rightleftharpoons Mg(s)$	-2.37
$Na^+(aq) + e^- \rightleftharpoons Na(s)$	-2.71
$Ca^{2+}(aq) + 2e^{-} \rightleftharpoons Ca(s)$	-2.87
$K^+(aq) + e^- \rightleftharpoons K(s)$	-2.93
$\text{Li}^+(\text{aq}) + e^- \rightleftharpoons \text{Li}(s)$	-3.04

3. Chemical relationships

Name	Formula	
number of moles of a substance	$n = \frac{m}{M}; n = cV; n = \frac{V}{V_m}$	
universal gas equation	pV = nRT	
calibration factor (CF) for bomb calorimetry	$CF = \frac{VIt}{\Delta T}$	
heat energy released in the combustion of a fuel	$q = mc \Delta T$	
enthalpy of combustion	$\Delta H = \frac{q}{n}$	
electric charge	Q = It	
number of moles of electrons	$n(e^{-}) = \frac{Q}{F}$	
% atom economy	$\frac{\text{molar mass of desired product}}{\text{molar mass of all reactants}} \times \frac{100}{1}$	
% yield	$\frac{\text{actual yield}}{\text{theoretical yield}} \times \frac{100}{1}$	

4. Physical constants and standard values

Name	Symbol	Value
Avogadro constant	$N_{\rm A}$ or L	$6.02 \times 10^{23} \text{ mol}^{-1}$
charge on one electron (elementary charge)	е	$-1.60 \times 10^{-19} \text{ C}$
Faraday constant	F	$96\ 500\ {\rm C\ mol}^{-1}$
molar gas constant	R	$8.31 \text{ J mol}^{-1} \text{ K}^{-1}$
molar volume of an ideal gas at SLC (25°C and 100 kPa)	V _m	24.8 L mol^{-1}
specific heat capacity of water	С	4.18 kJ kg ⁻¹ K ⁻¹ or 4.18 J g ⁻¹ K ⁻¹
density of water at 25°C	d	997 kg m ^{-3} or 0.997 g mL ^{-1}

5. Unit conversions

Measured value	Conversion	
0°C	273 K	
100 kPa	750 mm Hg or 0.987 atm	
1 litre (L)	$1 \text{ dm}^3 \text{ or } 1 \times 10^{-3} \text{ m}^3 \text{ or } 1 \times 10^3 \text{ cm}^3 \text{ or } 1 \times 10^3 \text{ mL}$	

6. Metric (including SI) prefixes

Metric (including SI) prefixes	Scientific notation	Multiplying factor
giga (G)	109	1 000 000 000
mega (M)	10 ⁶	1 000 000
kilo (k)	10 ³	1000
deci (d)	10 ⁻¹	0.1
centi (c)	10 ⁻²	0.01
milli (m)	10 ⁻³	0.001
micro (μ)	10 ⁻⁶	0.000001
nano (n)	10 ⁻⁹	0.000000001
pico (p)	10 ⁻¹²	0.000000000001

7. Acid–base indicators

Name	pH range	Colour change from lower pH to higher pH in range
thymol blue (1st change)	1.2–2.8	$red \rightarrow yellow$
methyl orange	3.1-4.4	$red \rightarrow yellow$
bromophenol blue	3.0-4.6	yellow \rightarrow blue
methyl red	4.4-6.2	$red \rightarrow yellow$
bromothymol blue	6.0–7.6	yellow \rightarrow blue
phenol red	6.8-8.4	yellow \rightarrow red
thymol blue (2nd change)	8.0–9.6	yellow \rightarrow blue
phenolphthalein	8.3–10.0	$colourless \rightarrow pink$

8. Representations of organic molecules

The following table shows different representations of organic molecules, using butanoic acid as an example.

Formula	Representation	
molecular formula	C ₄ H ₈ O ₂	
structural formula	$H = \begin{bmatrix} H & H & H \\ I & I & I \\ C & C & C & C \\ I & I & I \\ H & H & H \end{bmatrix} = \begin{bmatrix} O \\ O \\ O & -H \end{bmatrix}$	
semi-structural (condensed) formula	CH ₃ CH ₂ CH ₂ COOH or CH ₃ (CH ₂) ₂ COOH	
skeletal structure	О	

9. Formulas of some fatty acids

Name	Formula	Semi-structural formula
lauric	C ₁₁ H ₂₃ COOH	CH ₃ (CH ₂) ₁₀ COOH
myristic	C ₁₃ H ₂₇ COOH	CH ₃ (CH ₂) ₁₂ COOH
palmitic	C ₁₅ H ₃₁ COOH	CH ₃ (CH ₂) ₁₄ COOH
palmitoleic	C ₁₅ H ₂₉ COOH	CH ₃ (CH ₂) ₄ CH ₂ CH=CHCH ₂ (CH ₂) ₅ CH ₂ COOH
stearic	C ₁₇ H ₃₅ COOH	CH ₃ (CH ₂) ₁₆ COOH
oleic	C ₁₇ H ₃₃ COOH	CH ₃ (CH ₂) ₇ CH=CH(CH ₂) ₇ COOH
linoleic	C ₁₇ H ₃₁ COOH	CH ₃ (CH ₂) ₄ (CH=CHCH ₂) ₂ (CH ₂) ₆ COOH
linolenic	C ₁₇ H ₂₉ COOH	CH ₃ CH ₂ (CH=CHCH ₂) ₃ (CH ₂) ₆ COOH
arachidic	C ₁₉ H ₃₉ COOH	CH ₃ (CH ₂) ₁₇ CH ₂ COOH
arachidonic	C ₁₉ H ₃₁ COOH	CH ₃ (CH ₂) ₄ (CH=CHCH ₂) ₃ CH=CH(CH ₂) ₃ COOH

10. Formulas of some biomolecules

vitamin C (ascorbic acid)

 α -glucose

 β -fructose

ChemU3_DS_2022

aspartame

cellulose

amylopectin (starch)

amylose (starch)

11. Heats of combustion of common fuels

The heats of combustion in the following table are calculated at SLC (25°C and 100 kPa) with combustion products being CO₂ and H₂O. Heat of combustion may be defined as the heat energy released when a specified amount of a substance burns completely in oxygen and is, therefore, reported as a positive value, indicating a magnitude. Enthalpy of combustion, ΔH , for the substances in this table would be reported as negative values, indicating the exothermic nature of the combustion reaction.

Fuel	Formula	State	Heat of combustion (kJ g ⁻¹)	Molar heat of combustion (kJ mol ⁻¹)
hydrogen	H ₂	gas	141	282
methane	CH ₄	gas	55.6	890
ethane	C ₂ H ₆	gas	51.9	1560
propane	C ₃ H ₈	gas	50.5	2220
butane	C_4H_{10}	gas	49.7	2880
octane	C ₈ H ₁₈	liquid	47.9	5460
ethyne (acetylene)	C ₂ H ₂	gas	49.9	1300
methanol	CH ₃ OH	liquid	22.7	726
ethanol	C ₂ H ₅ OH	liquid	29.6	1360

12. Heats of combustion of common blended fuels

Blended fuels are mixtures of compounds with different mixture ratios and, hence, determination of a generic molar enthalpy of combustion is not realistic. The values provided in the following table are typical values for heats of combustion at SLC (25°C and 100 kPa) with combustion products being CO_2 and H_2O . Values for heats of combustion will vary depending on the source and composition of the fuel.

Fuel	State	Heat of combustion (kJ g ⁻¹)
kerosene	liquid	46.2
diesel	liquid	45.0
natural gas	gas	54.0

13. Energy content of food groups

Food	Heat of combustion (kJ g ⁻¹)
fats and oils	37
protein	17
carbohydrate	16

Bond	Wave number (cm ⁻¹)	Bond	Wave number (cm ⁻¹)
C-Cl (chloroalkanes)	600-800	C=O (ketones)	1680–1850
C–O (alcohols, esters, ethers)	1050–1410	C=O (esters)	1720–1840
C=C (alkenes)	1620–1680	C–H (alkanes, alkenes, arenes)	2850-3090
C=O (amides)	1630–1680	O-H (acids)	2500-3500
C=O (aldehydes)	1660–1745	O–H (alcohols)	3200-3600
C=O (acids)	1680–1740	N–H (amines and amides)	3300-3500

14. Characteristic ranges for infra-red absorption

15. ¹³C NMR data

Typical ${}^{13}C$ shift values relative to TMS = 0

These can differ slightly in different solvents.

Type of carbon	Chemical shift (ppm)
R–CH ₃	8–25
R-CH ₂ -R	20-45
R ₃ –CH	40-60
R ₄ -C	36–45
R-CH ₂ -X	15–80
R_3C-NH_2, R_3C-NR	35–70
R–CH ₂ –OH	50–90
RC=CR	75–95
R ₂ C=CR ₂	110–150
RCOOH	160–185
$R_{RO} > C = O$	165–175
$R \to C = O$	190–200
R ₂ C=O	205–220

16. ¹H NMR data

Typical proton shift values relative to TMS = 0

These can differ slightly in different solvents. The shift refers to the proton environment that is indicated in bold letters in the formula.

Type of proton	Chemical shift (ppm)
R–CH ₃	0.9–1.0
R-CH ₂ -R	1.3–1.4
RCH=CH–CH ₃	1.6–1.9
R ₃ -CH	1.5
$CH_3 - C \bigvee_{OR}^{0} \text{ or } CH_3 - C \bigvee_{NHR}^{0}$	2.0
$\begin{array}{c} \mathbf{R} \\ \mathbf{C} \\ \mathbf{H} \\ \mathbf{O} \end{array} $	2.1–2.7
$R-CH_2-X (X = F, Cl, Br \text{ or } I)$	3.0-4.5
R–C H ₂ –OH, R ₂ –C H –OH	3.3–4.5
R-C ^{//O} NHCH ₂ R	3.2
$R-O-CH_3$ or $R-O-CH_2R$	3.3–3.7
$ \bigcirc \bigcirc$	2.3
R-COCH ₂ R	3.7–4.8
R–O–H	1-6 (varies considerably under different conditions)
R–NH ₂	1–5
RHC=CHR	4.5–7.0
ОН	4.0–12.0

Type of proton	Chemical shift (ppm)
Н	6.9–9.0
R-C ^{NHCH₂R}	8.1
R-C ^{HO} _H	9.4–10.0
	9.0–13.0

17. 2-amino acids (α -amino acids)

The table below provides simplified structures to enable the drawing of zwitterions, the identification of products of protein hydrolysis and the drawing of structures involving condensation polymerisation of amino acid monomers.

Name	Symbol	Structure
alanine	Ala	СН ₃ H ₂ N—CH—COOH
arginine	Arg	$\begin{array}{c} \begin{array}{c} & & & \text{NH} \\ & & \parallel \\ & \text{CH}_2 - \text{CH}_2 - \text{CH}_2 - \text{NH} - \text{C} - \text{NH}_2 \\ \\ & \parallel \\ & \text{H}_2 \text{N} - \text{CH} - \text{COOH} \end{array}$
asparagine	Asn	$ \begin{array}{c} O \\ II \\ CH_2 - C - NH_2 \\ I \\ H_2N - CH - COOH \end{array} $
aspartic acid	Asp	$\begin{array}{c} CH_2 - COOH \\ I \\ H_2N - CH - COOH \end{array}$
cysteine	Cys	$\begin{array}{c} CH_2 - SH \\ I \\ H_2N - CH - COOH \end{array}$
glutamic acid	Glu	$\begin{array}{c} CH_2 - CH_2 - COOH \\ H_2N - CH - COOH \end{array}$
glutamine	Gln	$ \begin{array}{c} O \\ CH_2 - CH_2 - C - NH_2 \\ H_2N - CH - COOH \end{array} $
glycine	Gly	H ₂ N — CH ₂ — COOH
histidine	His	$\begin{array}{c} \begin{array}{c} & & \\ & & \\ & & \\ & \\ H_2 N - CH_2 - COOH \end{array} \end{array} \\ \begin{array}{c} & \\ & \\ H_2 N - CH_2 - COOH \end{array}$
isoleucine	Ile	$\begin{array}{c} CH_3 - CH - CH_2 - CH_3 \\ I \\ H_2N - CH - COOH \end{array}$

Name	Symbol	Structure
leucine	Leu	$CH_{3} - CH - CH_{3}$ $ CH_{2}$ $H_{2}N - CH - COOH$
lysine	Lys	$\begin{array}{c} CH_2 - CH_2 - CH_2 - CH_2 - NH_2 \\ H_2N - CH - COOH \end{array}$
methionine	Met	$\begin{array}{c} CH_2 - CH_2 - S - CH_3 \\ H_2N - CH - OOH \end{array}$
phenylalanine	Phe	H_2N CH - COOH
proline	Pro	НN СООН
serine	Ser	СH ₂ —ОН H ₂ N—СН—СООН
threonine	Thr	СH ₃ —СН—ОН H ₂ N—СН—СООН
tryptophan	Trp	HN CH2 H2N-CH-COOH
tyrosine	Tyr	CH ₂ —OH H ₂ N—CH—COOH
valine	Val	$CH_{3} - CH - CH_{3}$ $H_{2}N - CH - COOH$

END OF DATA BOOKLET

Trial Examination 2022

VCE Chemistry Unit 3

Written Examination

Multiple-choice Answer Sheet

Student's Name: _____

Teacher's Name: _____

Instructions

Use a **pencil** for **all** entries. If you make a mistake, **erase** the incorrect answer – **do not** cross it out. Marks will **not** be deducted for incorrect answers.

No mark will be given if more than one answer is completed for any question.

All answers must be completed like this example:

Use pencil only

A

В

С

D

1 A B C D 2 A B C D 3 A B C D 4 A B C D 5 A B C D 6 A B C D 7 A B C D 8 A B C D 9 A B C D 10 A B C D					
2 A B C D 3 A B C D 4 A B C D 5 A B C D 6 A B C D 7 A B C D 8 A B C D 9 A B C D 10 A B C D	1	Α	В	С	D
3 A B C D 4 A B C D 5 A B C D 6 A B C D 7 A B C D 8 A B C D 9 A B C D 10 A B C D	2	Α	В	С	D
4 A B C D 5 A B C D 6 A B C D 7 A B C D 8 A B C D 9 A B C D 10 A B C D	3	Α	В	С	D
5 A B C D 6 A B C D 7 A B C D 8 A B C D 9 A B C D 10 A B C D	4	Α	В	С	D
6ABCD7ABCD8ABCD9ABCD10ABCD	5	Α	В	С	D
7 A B C D 8 A B C D 9 A B C D 10 A B C D	6	Α	В	С	D
8ABCD9ABCD10ABCD	7	Α	В	С	D
9 A B C D 10 A B C D	8	Α	В	С	D
10 A B C D	9	Α	В	С	D
	10	Α	В	С	D

11	Α	В	С	D
12	Α	В	С	D
13	Α	В	С	D
14	Α	В	С	D
15	Α	В	С	D
16	Α	В	С	D
17	Α	В	С	D
18	Α	В	С	D
19	Α	В	С	D
20	Α	В	С	D

Neap[®] Education (Neap) Trial Exams are licensed to be photocopied or placed on the school intranet and used only within the confines of the school purchasing them, for the purpose of examining that school's students only. They may not be otherwise reproduced or distributed. The copyright of Neap Trial Exams remains with Neap. No Neap Trial Exam or any part thereof is to be issued or passed on by any person to any party inclusive of other schools, non-practising teachers, coaching colleges, tutors, parents, students, publishing agencies or websites without the express written consent of Neap.