

Trial Examination 2023

VCE Chemistry Unit 3

Written Examination

Suggested Solutions

SECTION A - MULTIPLE-CHOICE QUESTIONS

1	Α	В	С	D
2	Α	В	С	D
3	Α	В	С	D
4	Α	В	С	D
5	Α	В	С	D
6	Α	В	С	D
7	Α	В	С	D
8	Α	В	С	D
9	Α	В	С	D
10	Α	В	С	D

11	Α	В	С	D
12	Α	В	С	D
13	Α	В	С	D
14	Α	В	С	D
15	Α	В	С	D
16	Α	В	С	D
17	Α	В	С	D
18	Α	В	С	D
19	Α	В	С	D
20	Α	В	С	D

Neap[®] Education (Neap) Trial Exams are licensed to be photocopied or placed on the school intranet and used only within the confines of the school purchasing them, for the purpose of examining that school's students only for a period of 12 months from the date of receiving them. They may not be otherwise reproduced or distributed. The copyright of Neap Trial Exams remains with Neap. No Neap Trial Exam or any part thereof is to be issued or passed on by any person to any party inclusive of other schools, non-practising teachers, coaching colleges, tutors, parents, students, publishing agencies or websites without the express written consent of Neap.

Question 1 D

D is correct and **B** is incorrect. In a chemical reaction, a catalyst changes the rates of the forward and reverse reactions equally and lowers the activation energy, E_a ; however, it has no effect on the enthalpy change, ΔH , of the reaction nor the enthalpies of the reactants and products.

A and C are incorrect. A catalyst lowers the E_a .

Question 2 A

A is correct. This option is the half-equation that correctly represents the oxidation process.

B is incorrect. The product of the incomplete combustion of methanol, CH_3OH , is water, H_2O , not hydrogen gas, H_2 .

C is incorrect. This equation represents the reaction in the acid version of the fuel cell. Hydrogen ions, H^+ , are not a reactant in the alkaline cell.

D is incorrect. The equation is not correctly balanced, and H_2O would be a liquid under standard laboratory conditions (SLC).

Question 3 B

B is correct. At 2 minutes, the temperature of the equilibrium mixture was changed. This means that the equilibrium constant, K_c , values at 1 minute and 5 minutes are not equal; that is, $K_{c1} \neq K_{c2}$. The change at 6 minutes, which is the removal of gas Q, does not change the K_c value; thus, $K_{c2} = K_{c3}$.

A, **C** and **D** are incorrect. The temperature change at 2 minutes caused the K_c value to change so that K_{c1} does not equal K_{c2} or K_{c3} .

Question 4 D

D is correct. At 3 minutes, the concentration of gas R was falling, and so the rate of formation must have been lower than the rate of decomposition.

A is incorrect. At 2 minutes, the temperature was changed and the position of equilibrium moved towards the reactants (P and Q). However, it is not certain whether the temperature was increased or decreased. If it was an increase, it was an exothermic reaction as the reverse reaction was favoured. If it was a decrease, the reaction must have been endothermic.

B is incorrect. At 6 minutes, some of gas Q was removed from the equilibrium mixture.

C is incorrect. Even though the concentrations did not change at equilibrium, the reaction was still occurring with the rate of formation equal to the rate of decomposition.

Question 5 C

A catalyst causes a reaction to reach equilibrium faster, but the concentrations of the components of a gaseous equilibrium do not change once equilibrium has been reached.

Question 6 D

D is correct. The reaction in a bioethanol fuel cell is exothermic, meaning that the products (carbon dioxide and water vapour) contain less energy than the reactants (ethanol and oxygen).

A is incorrect. The reaction of ethanol in a fuel cell is identical to the complete combustion of ethanol; therefore, it produces the greenhouse gases carbon dioxide and water vapour.

B is incorrect. Bioethanol molecules and molecules of ethanol derived from crude oil are identical in every respect.

C is incorrect. While the carbon dioxide used in photosynthesis by plants balances the carbon dioxide produced in a bioethanol fuel cell, the production of the bioethanol and construction of the fuel cell is likely to use some electricity produced by the burning of coal and other energy derived from the burning of fossil fuels. The production and use of bioethanol is therefore not likely to be 100% carbon neutral.

Question 7 B

Feature I applies to both galvanic and electrolytic cells. Energy transformations are not 100% efficient; some energy is lost as heat.

Feature II applies to galvanic cells only. Negative ions (anions) move towards the anode or positive electrode in electrolytic cells.

Feature III does not apply to galvanic cells nor electrolytic cells. Oxidising agents gain electrons; they do not lose them.

Feature IV applies to electrolytic cells only. The redox reactions in galvanic cells are spontaneous.

Therefore, **B** is correct.

Question 8 B

B is correct. The change at t_1 caused the rate of both the forward and reverse reactions to decrease. This is consistent with a decrease in temperature. The forward reaction was exothermic, as seen in the negative ΔH ; therefore, a decrease in temperature would have meant that the forward reaction – the temperature-increasing reaction – was favoured. The rate of the forward reaction was higher than the rate of the reverse reaction until the new equilibrium was reached.

A is incorrect. Removing gas W would not have immediately affected the rate of the reverse reaction.

C is incorrect. Removing gas Z would not have immediately affected the rate of the forward reaction.

D is incorrect. Decreasing the volume would have increased the concentrations of all species and so would have increased the rates of both the forward and reverse reactions.

Question 9 B

B is correct. The products of the forward reaction become the reactants of the reverse reaction and require an E_a of 25 kJ mol⁻¹ to overcome the activation barrier, as seen in the energy profile diagram.

A is incorrect. E_a is never negative.

C is incorrect. This value is the difference between the magnitude of the ΔH of the forward and reverse reactions (95 kJ mol⁻¹) and the E_a of the reverse reaction (25 kJ mol⁻¹); it has no relevance.

D is incorrect. This value is the magnitude of the ΔH of the forward and reverse reactions.

Question 10 C

C is correct. The cell reaction occurs according to the equation $\text{Cl}_2(g) + \text{Sn}^{2+}(aq) \rightarrow 2\text{Cl}^-(aq) + \text{Sn}^{4+}(aq)$. $\text{Cl}_2(g)$ gains electrons and so is reduced, meaning it is the oxidising agent. $\text{Sn}^{2+}(aq)$ causes the reduction and so is the reducing agent.

A is incorrect. $Cl_2(g)$ is the oxidising agent.

B is incorrect. $Cl^{-}(aq)$ is the conjugate reducing agent of the oxidising agent.

D is incorrect. $\operatorname{Sn}^{4+}(\operatorname{aq})$ is the conjugate oxidising agent of the reducing agent.

Question 11 D

D is correct. The products of the spontaneous forward redox reaction become the reactants for the non-spontaneous redox reaction that occurs during electrolysis. For this to happen, the products of the spontaneous reaction must remain in contact with the electrodes.

A is incorrect. Electrolysis can occur in two separate half-cells as well as a single container.

B is incorrect. Electrolysis is often conducted using platinum, Pt, electrodes.

C is incorrect. If the products of a galvanic cell reaction do not remain in contact with the electrodes, no amount of energy will cause the spontaneous forward redox reaction to reverse.

Question 12 A

A is correct. The high concentration of chloride ions, Cl^- , means that predictions made using the electrochemical series are unreliable. Even though water, H_2O , is a stronger reducing agent than Cl^- , chlorine gas, Cl_2 – rather than oxygen gas, O_2 – is produced at the anode according to the equation $2Cl^-(aq) \rightarrow Cl_2(g) + 2e^-$. This is oxidation, which occurs at the anode (positive electrode) in an electrolytic cell. The information provided also indicates that the electrolytic cell produces Cl_2 .

B is incorrect. Hydrogen gas, H₂, is produced at the cathode according to the following equation. $2H_2O(1) + 2e^- \rightarrow H_2(g) + 2OH^-(aq).$

C is incorrect. O_2 is not produced at the anode because the high concentration of Cl^- makes the production of Cl_2 more likely.

D is incorrect. Sodium, Na, could only be produced at the cathode; however, as H_2O is a stronger oxidising agent than sodium ions, Na⁺, Na is never produced from an aqueous solution.

Question 13 C

C is correct. Na⁺ is present in the brine and used to produce sodium hydroxide, NaOH, in the chamber containing the cathode (negative electrode). The polymer membrane prevents the passage of Cl^- into the cathode chamber; if Cl^- could pass to the cathode, it would mix with OH⁻, resulting in an impure mix of NaOH and NaCl being collected.

A is incorrect. Cl_2 forms at the anode because of the high concentration of Cl^- , not because of the membrane.

B is incorrect. H_2 forms at the cathode because H_2O is a stronger oxidising agent than Na⁺.

D is incorrect. Although used brine can be reclaimed from the cell, this is not the primary reason why the membrane is used.

Question 14 D

Reactant molecules must collide with sufficient energy and in the correct orientation in order for the bonds within them to be broken so that the products can form.

Question 15 A

 $n(e^{-}) = \frac{It}{F} = \frac{0.25 \times 2.0 \times 60 \times 60}{96500} = 0.0187 \text{ C}$

n(metal) = 0.0185 mol

As $n(e^{-}) \approx n(\text{metal})$, the charge on each metal ion was +1.

Question 16 D

D is correct. The conclusions from the results are as follows.

- Metal L and $J^{2+}(aq)$: J^{2+} ions are stronger oxidising agents than L^{2+} ions.
- Metal J and $Q^{2+}(aq)$: Q^{2+} ions are stronger oxidising agents than J^{2+} ions.
- Metal Q and $H^+(aq)$: Q^{2+} ions are stronger oxidising agents than H^+ ions.
- Metal L and $H^+(aq)$: H^+ ions are stronger oxidising agents than L^{2+} ions.

Therefore, the order of decreasing oxidising strength is $Q^{2+} > J^{2+} > L^{2+}$, with H⁺ ions being second or third in the order. The order of decreasing reducing strength is L > J > Q.

A is incorrect. Metal L is the strongest reducing agent.

B is incorrect. H^+ ions are weaker oxidising agents than Q^{2+} ions.

C is incorrect. Metal Q is a weaker reducing agent than metals J and L.

Question 17 A

A is correct. If mixing metal J with H^+ ions produces a reaction, then H^+ ions are stronger oxidising agents than J^{2+} ions. If no reaction occurs, then J^{2+} ions are stronger oxidising agents than H^+ ions. Either result makes it possible to place H^+ ions in the order of oxidising agents according to their relative oxidising strengths.

B is incorrect. The results have already established that J^{2+} ions are stronger oxidising agents than L^{2+} ions.

C is incorrect. The results have already established that Q^{2+} ions are stronger oxidising agents than J^{2+} ions.

D is incorrect. The results have already established that Q^{2+} ions are stronger oxidising agents than L^{2+} ions.

Question 18 C

C is correct. At the negatively charged anode, methane, CH_4 , reacts with oxide ions, O^{2-} , to produce CO_2 , H_2O and electrons. The electrons flow from the anode to the cathode, where they are used to reduce O_2 to O^{2-} . To complete the circuit, O^{2-} ions produced at the cathode travel though the electrolyte towards the anode, where they react with CH_4 . The relevant equations are:

•
$$CH_4 + 4O^{2-} \rightarrow CO_2 + 2H_2O + 8e^{-}$$

•
$$O_2 + 4e^- \rightarrow 2O^{2-}$$

A is incorrect. The oxidation number of carbon changes from -4 in CH₄ to +4 in CO₂.

B is incorrect. O_2 is reduced at the positively charged cathode.

D is incorrect. Electrons flow from the anode to the cathode.

Question 19 A

A is correct. A secondary cell produces electrical energy by separating two spontaneous half-reactions into separate containers and making the transfer of electrons proceed along a connecting wire. If one or more of the reactants is depleted, the cell reaction will stop and no electricity will be produced; that is, the battery is 'flat'.

B is incorrect. A secondary cell is rechargeable and so the products of the cell reaction must be kept in contact with the electrodes so that the cell reaction can be reversed by inputting electrical energy. If a product escapes from the cell, then recharging would not be possible; however, this does not best explain why a battery becomes flat.

C is incorrect. In a secondary cell, electrons move through a connecting wire; they do not flow through the electrolyte.

D is incorrect. In a secondary cell, the electrodes must be intact for the cell reaction to be reversed so that the cell can be recharged. If an electrode is consumed, then recharging would not be possible; however, this does not best explain why a battery becomes flat.

Question 20 C

Electrons are forced back onto the negative electrode of the cell when recharging using electrical energy from the power source. This causes the reactants to gain electrons, which is reduction.

SECTION B

b.

i.

Question 1 (13 marks)

a. i.
$$C_3H_8(g) + 5O_2(g) \rightarrow 3CO_2(g) + 4H_2O(l)$$
 $\Delta H = -2220 \text{ kJ mol}^{-1}$

2 marks

1 mark for providing the correct balanced equation. 1 mark for providing the enthalpy change, including the negative sign.

ii. At SLC, 1.0 L of
$$C_3H_8$$
 contains $\frac{1.0}{24.8}$ mol of gas. 1 mark

$$n(\text{CO}_2) = 3 \times n(\text{C}_3\text{H}_8) = 3 \times \frac{1.0}{24.8} = 0.1210 \text{ mol}$$
 1 mark

$$m(\text{CO}_2) = n \times M = 0.1210 \times 44.0 = 5.32258 = 5.32 \text{ g}$$
 1 mark

iii. energy released by burning $C_3H_8 = 2220 \times 0.461 = 1023 \text{ kJ}$ 1 mark only 65% of the heat energy was transferred, therefore: 65% of the energy transferred = 1023×0.650

$$\Delta T = \frac{E}{m \times c} = \frac{665.0 \times 10^3}{15\ 000 \times 4.18} = 10.61^{\circ}C$$

$$\Delta T = T_{\text{final}} - T_{\text{initial}}; \text{ hence, } T_{\text{final}} = 17.8 + 10.61 = 28.4^{\circ}C.$$
1 mark
To write a thermochemical equation, the energy released in the combustion of a known
amount of a single compound must be known. As kerosene is a mixture of compounds,
it is not possible to satisfy this requirement.
1 mark

At a set temperature, the molecules in kerosene would therefore move more freely than those in petrodiesel, and so kerosene is likely to have a lower viscosity. 1 mark

iii.
$$m$$
(kerosene that would produce 10.5 MJ of energy) = $\frac{10.5 \times 10^3}{43.7}$ 1 mark

$$= 240.27 = 240 \text{ g}$$
 1 mark

Question 2 (12 marks)

a.

i.

	SO ₂	Cl ₂	SO ₂ Cl ₂
n(initial)	2.0	1.0	0.0
Change	-0.70	-0.70	+0.70
n(equilibrium)	1.3	0.30	0.70
$c(\text{equilibrium}) = \frac{n(\text{equilibrium})}{2.0}$	0.65 M	0.15 M	0.35 M

3 marks

1 mark for each gas concentration.

ii. reaction quotient (or concentration fraction),
$$Q = \frac{[SO_2Cl_2]}{[SO_2][Cl_2]}$$
 1 mark
= $\frac{0.35}{0.65 \times 0.15} = 3.59 = 3.6 \text{ M}^{-1}$ 1 mark

The K_c at T_1 is 3.8 M⁻¹ and so the system did not reach equilibrium because the value of the reaction quotient does not equal the value of the K_c . 1 mark *Note: Consequential on answer to Question 2a.i.*

b. At T_2 , the value of the K_c is higher, meaning that $[SO_2Cl_2]$ has increased, and $[SO_2]$ and $[Cl_2]$ have decreased. 1 mark

The formation of SO_2Cl_2 (forward reaction) is exothermic, and so the system must have been cooled for the formation of products to be favoured; therefore, T_2 is lower than T_1 . 1 mark

	Positi	ion of equilib	orium	
Change made to the equilibrium mixture	Moved towardsMoved towardsDid not moveproductsreactants		Explanation	
Volume was decreased at constant temperature.	✓			The pressure would have increased, and so the side of the reaction with fewer moles of gas (that is, the forward reaction) would have been favoured according to Le Chatelier's principle.
Pressure was increased by the addition of argon gas at constant volume.			~	The addition of argon would not have changed the concentrations of the gases in the system, and so the position of equilibrium would not have moved.

4 marks

1 mark for each change in position of equilibrium identified. 1 mark for each explanation provided. Question 3 (11 marks)

a. i. voltage =
$$E^0$$
 (oxidising agent) – E^0 (reducing agent) = 0.77 – (-0.50) = 1.27 V 1 mark

ii.
$$Fe^{3+}(aq) + e^{-} \rightarrow Fe^{2+}(aq)$$

iii. The salt bridge provides electrical connection between the half-cells by allowing the free movement of ions in both directions. The movement of the ions keeps the overall charge of the half-cells neutral.

1 mark

V.	Statement	Correct or incorrect	Explanation for why the statement is correct or incorrect
	As ethanol (C_2H_5OH) is completely soluble in water, it can be used to wet the salt bridge to enable the galvanic cell to operate.	incorrect	The liquid used to wet the salt bridge must contain ions so that ion movement can occur between the half-cells; as ethanol does not contain ions, it is not suitable.
	A chromium electrode must be used in the $Cr^{3+}(aq)/Cr^{2+}(aq)$ half-cell and an iron electrode must be used in the Fe ³⁺ (aq)/Fe ²⁺ (aq) half-cell.	incorrect	Using chromium and iron electrodes would introduce metals into the galvanic cell that are capable of reacting with the components of the cell, and so the overall cell reaction and voltage would be uncertain.

3 marks

1 mark

1 mark for stating that both statements are incorrect. 1 mark for each explanation provided.

b.	i.	the ability to allow ions to pass through	1 mark
	ii.	$\mathrm{Fe}^{3+}(\mathrm{aq}) + \mathrm{e}^{-} \rightarrow \mathrm{Fe}^{2+}(\mathrm{aq})$	1 mark
	iii.	$\operatorname{Cr}^{3+}(\operatorname{aq}) + e^{-} \to \operatorname{Cr}^{2+}(\operatorname{aq})$	1 mark
	iv.	The electrodes are not porous because the reactants are not gases, which would need to pass through the electrodes so that contact between the gas and electrolyte is made. The electrodes could be catalytic so that a fast reaction is ensured if the uncatalysed	1 mark

reaction is too slow for this application.

Copyright © 2023 Neap Education Pty Ltd

Question 4 (6 marks)

as the anode.

ceramic hood

c.

d.

 $2Cl^{-}(l) \rightarrow Cl_{2}(g) + 2e^{-}$

Que	stion 4 (6 marks)	
a.	In 1.0 m ³ of the biogas, there is $\frac{0.5 \times 1000}{100} = 5 \text{ L}$ of H ₂ , which at SLC is $\frac{5}{24.8}$ mol of H ₂ .	1 mark
	$m(H_2) = n \times M = \frac{5}{24.8} \times 2.0 = 0.4032 \text{ g} = 0.4 \text{ g}$	1 mark
b.	The organic waste matter source material used to produce biogas is renewable as it can be grown repeatedly in a relatively short time. The H_2 in biogas is therefore renewable. The CH_4 from biogas can be converted to H_2 using the steam-reforming process. Therefore, this H_2 is also renewable.	1 mark 1 mark
	Therefore, uns m ₂ is also renewable.	1 IIIdi K
c.	Burning H_2 requires a number of energy conversions to produce movement in a car and some energy is lost at each conversion with significant overall heat loss.	1 mark
	Using H_2 in a fuel cell requires only one energy conversion of chemical energy to electrical energy. With less conversions there is less energy lost and so this method is more energy efficient.	1 mark
Que	stion 5 (7 marks)	
a.	Water is a stronger oxidising agent than magnesium ions.	1 mark
	Thus, if an aqueous solution were used, water would react at the cathode preferentially and no magnesium metal would form.	1 mark
b.	Iron is a relatively inexpensive metal and can be used as the cathode as no reaction will occur between magnesium ions and iron.	1 mark
	Iron is a stronger reducing agent than chloride ions, and so it would react if it were used	

The products of the electrolysis (Mg and Cl_2) are the reactants of a spontaneous redox reaction. If these products were mixed, the spontaneous reaction would occur, and so no

Mg or Cl_2 would be obtained. The ceramic hood prevents this mixing.

1 mark

1 mark

1 mark

1 mark

average rate of reaction $= \frac{\Delta m}{\Delta t} = \frac{0.34}{30} = 0.011 \text{ g of Fe min}^{-1}$ a. 1 mark i. b. 0.40 $0.10 \text{ MBr}_{2}(aq)$ 0.30 mass loss 0.20 of Fe(s) (grams) $0.050 \text{ MBr}_{2}(aq)$ 0.10 15 20 25 10 30 time (minutes) 1 mark ii. The 0.050 M Br₂ solution has half the concentration of the original 0.10 M Br₂ solution and so half the number of moles of particles in a set volume. 1 mark The number of collisions between the reactants would therefore be approximately halved and the number of successful collisions would also be halved. Therefore, the rate of reaction would be approximately half the rate of the original 0.10 M Br₂ solution experiment. 1 mark Based on the electrochemical series, the stronger oxidising agent, Br2, reacts spontaneously c. with the stronger reducing agent, Fe. 1 mark

This spontaneous redox reaction would be exothermic.

Question 6 (6 marks)

ChemU3_SS_2023

1 mark

Trial Examination 2023

VCE Chemistry Unit 3

Written Examination

Data Booklet

Instructions

This data booklet is provided for your reference. A question and answer booklet is provided with this data booklet.

Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic devices into the examination room.

Neap[®] Education (Neap) Trial Exams are licensed to be photocopied or placed on the school intranet and used only within the confines of the school purchasing them, for the purpose of examining that school's students only for a period of 12 months from the date of receiving them. They may not be otherwise reproduced or distributed. The copyright of Neap Trial Exams remains with Neap. No Neap Trial Exam or any part thereof is to be issued or passed on by any person to any party inclusive of other schools, non-practising teachers, coaching colleges, tutors, parents, students, publishing agencies or websites without the express written consent of Neap.

Copyright	© 2023	Neap	Education	Ptv I td
Copyright	02020	nicup	Laucation	i ty Ltu

1. Periodic table of the elements

1 2000 20	[1							a
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\overset{2}{\overset{4.00}{He}}_{\text{helium}}$								uotosi bevi
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		$\mathbf{F}^{19.0}$	$\overset{17}{\text{Cl}}_{35.5}^{35.5}$	$\mathop{Br}_{79.9}$	$\mathbf{I}^{126.9}_{\text{iodine}}$	$\mathbf{At}_{(210)}^{85}$	$\underset{\text{tennessine}}{\overset{117}{\text{TS}}}$	71 Lu 175.0 tetium	103 Lr 262) rencium
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			16 32.1 sulfur	34 Se ^{79.0} selenium	$\mathbf{Te}_{127.6}^{52}$	$\stackrel{84}{P0}_{(210)}$	$\underset{(292)}{116}$		102 102 259 Delium law
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		$\mathbf{N}^{14.0}_{\mathrm{nitrogen}}$	15 30.1 phosphorus	$\mathbf{\hat{AS}}_{74.9}^{33}$	${\mathop{{\rm Sb}}\limits_{^{121.8}}}$	$\mathbf{Bi}_{209.0}^{83}$	$\underset{\mathrm{(289)}}{\overset{115}{\mathrm{Mc}}}$		01 1 1 258) (12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$									00 1 57) nium mend kets indicati
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$									9 S S S S S S S S S S S S S S S S S S S
$\frac{1}{900}$ $\frac{1}{9000}$ $\frac{1}{9000}$ $\frac{1}{90000}$ $\frac{1}{900000}$ $\frac{1}{900000000000000000000000000000000000$			5						The value
4atomic number79ymbol of element9.09.0799.079ymbol of element9.19.09.0799.0793.09.1235073737374759.12323242526733839.1212223242526739.1212223242526761649.19.19.01477273747576769.29.17475767677789409.29.19.010010095010710091009.39.11011031031031011001009.39.11011031031031031031039.31011051031031031031031039.31011051031031031032032531039.31011051031031031031032032539.3101105103103103103203253264779.3101105103103103103103203253264779.3101105103103103103103203265<						79 Au 197.0 r	111 Rg (272) ntgenium cop	m dysproi	um califor
4 B b c b b c b b c b b c b b c b c b c b c b b c b c b c b c b c c b c c b c 						78 Pt ^{95.1}	DS DS 271) stadtium roe		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		element			_		09 At 68) herium darm		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		ymbol of e ame of ele							
4 Be 9.0 24.3 magnesium atomic number atomic mass 12 Mg 9.0 12 Mg 9.0 12 Mg 9.0 12 Mg 9.0 12 Mg 9.0 12 Mg 9.0 13 Mg atomic number atomic mass 12 Mg 12 Mg 12 Mg 90 137.3 Barium 12 47.0 17.3 17.3 17.4 22 47.0 17.3 17.3 17.4 23 4.0 4.0 4.1 178.5 180.9 183.8 180.9 191.2 24 4.0 178.5 180.9 183.8 180.9 191.2 24 4.0 178.5 180.9 183.8 180.9 183.8 180.9 183.8 180.9 183.8 180.9 190.1 24 4.0 178.5 180.9 183.8 180.9 183.8 183.9 196.8 106 10 105 106 10 105									
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				25 M1 54.5 im manga	um techneti	n 186.	bohrician B	61 Pm (145) promethium	$\stackrel{93}{\overset{1}{\mathbf{Np}}}_{\mathrm{neptunium}}$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		atomic nu ve atomic		$^{22.0}$	42 96.0 molybder	74 183.8 tungste	106 Sg (266) seaborgi	60 Nd 144.2 reodymium	
4 4 Be beryllium 112 beryllium 20 beryllium 21 21 22 Ca 23 Sc 40.1 scandium 20 St 20 St 21 22 23 Sc 40.1 scandium 33 33 9 40 37.3 mutanoids 137.3 barnium barnium scinoids 137.3 barnium 137.3 barnium 88 89-103 88 89-103 83.9 100 83.9 140.1 1anthanoids 178 138.9 140.1 1anthanum cerium 256 57-71 138.9 140.1 138.9 140.1 1anthanum cerium 27 27 <tr< td=""><th></th><td>relati</td><td></td><td>$\sum_{50.9}^{23}$</td><td>41 92.9 uidoin</td><td>$T_{180.5}^{73}$</td><td>$\overset{105}{\text{Dbb}}$</td><td></td><td>$\begin{array}{c} 91\\ Pa\\ 231.0\\ ext{otactinium} \end{array}$</td></tr<>		relati		$\sum_{50.9}^{23}$	41 92.9 uidoin	$T_{180.5}^{73}$	$\overset{105}{\text{Dbb}}$		$\begin{array}{c} 91\\ Pa\\ 231.0\\ ext{otactinium} \end{array}$
A Beryllium Bery				$\mathbf{T}_{47.9}^{47.9}$	$\mathbf{Zr}_{91.2}^{40}$				
B B B B B B B B								57 La 138.9 tthanum	
$\begin{array}{c c} \mathbf{H} & \mathbf{H} \\ $		$\overset{4}{Be}_{\overset{9.0}{\text{beryllium}}}$	$\underset{\text{magnesium}}{\overset{12}{\text{Mgg}}}$	$\overset{20}{Calcium}_{\text{calcium}}$	38 Sr 87.6 strontium	56 Ba ^{137.3}	$\overset{88}{Ra}_{^{(226)}}$	lar	30
	$\overset{1}{\underset{\substack{1.0\\hydrogen}}{\overset{1.0}{1.$	\mathbf{L}^{3}_{1}	$\overset{11}{\overset{23.0}{\text{Na}}}$	$\overset{19}{\mathrm{K}}_{39.1}$	37 Rb ^{85.5} rubidium	$\mathbf{\hat{CS}}_{\mathbf{S}}^{55}$	$\mathop{Fr}_{(223)}^{87}$		

2. Electrochemical series

Reaction	Standard electrode potential (E^0) in volts at 25°C
$F_2(g) + 2e^- \rightleftharpoons 2F^-(aq)$	+2.87
$H_2O_2(aq) + 2H^+(aq) + 2e^- \rightleftharpoons 2H_2O(l)$	+1.77
$Au^+(aq) + e^- \rightleftharpoons Au(s)$	+1.68
$Cl_2(g) + 2e^- \rightleftharpoons 2Cl^-(aq)$	+1.36
$O_2(g) + 4H^+(aq) + 4e^- \rightleftharpoons 2H_2O(l)$	+1.23
$Br_2(l) + 2e^- \rightleftharpoons 2Br^-(aq)$	+1.09
$Ag^{+}(aq) + e^{-} \rightleftharpoons Ag(s)$	+0.80
$Fe^{3+}(aq) + e^{-} \rightleftharpoons Fe^{2+}(aq)$	+0.77
$O_2(g) + 2H^+(aq) + 2e^- \rightleftharpoons H_2O_2(aq)$	+0.68
$I_2(s) + 2e^- \rightleftharpoons 2I^-(aq)$	+0.54
$O_2(g) + 2H_2O(l) + 4e^- \rightleftharpoons 4OH^-(aq)$	+0.40
$Cu^{2+}(aq) + 2e^{-} \rightleftharpoons Cu(s)$	+0.34
$\operatorname{Sn}^{4+}(\operatorname{aq}) + 2e^{-} \rightleftharpoons \operatorname{Sn}^{2+}(\operatorname{aq})$	+0.15
$S(s) + 2H^{+}(aq) + 2e^{-} \rightleftharpoons H_2S(g)$	+0.14
$2\text{H}^+(\text{aq}) + 2\text{e}^- \rightleftharpoons \text{H}_2(\text{g})$	0.00
$Pb^{2+}(aq) + 2e^{-} \rightleftharpoons Pb(s)$	-0.13
$\operatorname{Sn}^{2+}(\operatorname{aq}) + 2e^{-} \rightleftharpoons \operatorname{Sn}(s)$	-0.14
$Ni^{2+}(aq) + 2e^{-} \rightleftharpoons Ni(s)$	-0.25
$\operatorname{Co}^{2+}(\operatorname{aq}) + 2e^{-} \rightleftharpoons \operatorname{Co}(s)$	-0.28
$Cd^{2+}(aq) + 2e^{-} \rightleftharpoons Cd(s)$	-0.40
$Fe^{2+}(aq) + 2e^{-} \rightleftharpoons Fe(s)$	-0.44
$Zn^{2+}(aq) + 2e^{-} \rightleftharpoons Zn(s)$	-0.76
$2H_2O(1) + 2e^- \rightleftharpoons H_2(g) + 2OH^-(aq)$	-0.83
$Mn^{2+}(aq) + 2e^{-} \rightleftharpoons Mn(s)$	-1.18
$Al^{3+}(aq) + 3e^{-} \rightleftharpoons Al(s)$	-1.66
$Mg^{2+}(aq) + 2e^{-} \rightleftharpoons Mg(s)$	-2.37
$Na^+(aq) + e^- \rightleftharpoons Na(s)$	-2.71
$Ca^{2+}(aq) + 2e^{-} \rightleftharpoons Ca(s)$	-2.87
$K^+(aq) + e^- \rightleftharpoons K(s)$	-2.93
$Li^+(aq) + e^- \rightleftharpoons Li(s)$	-3.04

3. Chemical relationships

Name	Formula
number of moles of a substance	$n = \frac{m}{M}; n = cV; n = \frac{V}{V_{\rm m}}$
universal gas equation	pV = nRT
calibration factor (CF) for bomb calorimetry	$CF = \frac{VIt}{\Delta T}$
heat energy released in the combustion of a fuel	$q = mc \Delta T$
enthalpy of combustion	$\Delta H = \frac{q}{n}$
electric charge	Q = It
number of moles of electrons	$n(e^{-}) = \frac{Q}{F}$
% atom economy	$\frac{\text{molar mass of desired product}}{\text{molar mass of all reactants}} \times \frac{100}{1}$
% yield	$\frac{\text{actual yield}}{\text{theoretical yield}} \times \frac{100}{1}$

4. Physical constants and standard values

Name	Symbol	Value
Avogadro constant	$N_{\rm A}$ or L	$6.02 \times 10^{23} \text{ mol}^{-1}$
charge on one electron (elementary charge)	е	$-1.60 \times 10^{-19} \text{ C}$
Faraday constant	F	96 500 C mol^{-1}
molar gas constant	R	$8.31 \text{ J mol}^{-1} \text{ K}^{-1}$
molar volume of an ideal gas at SLC (25°C and 100 kPa)	V _m	24.8 L mol^{-1}
specific heat capacity of water	С	4.18 kJ kg ⁻¹ K ⁻¹ or 4.18 J g ⁻¹ K ⁻¹
density of water at 25°C	d	997 kg m ^{-3} or 0.997 g mL ^{-1}

5. Unit conversions

Measured value	Conversion
0°C	273 K
100 kPa	750 mm Hg or 0.987 atm
1 litre (L)	$1 \text{ dm}^3 \text{ or } 1 \times 10^{-3} \text{ m}^3 \text{ or } 1 \times 10^3 \text{ cm}^3 \text{ or } 1 \times 10^3 \text{ mL}$

6. Metric (including SI) prefixes

Metric (including SI) prefixes	Scientific notation	Multiplying factor
giga (G)	10 ⁹	1 000 000 000
mega (M)	10 ⁶	1 000 000
kilo (k)	10 ³	1000
deci (d)	10 ⁻¹	0.1
centi (c)	10 ⁻²	0.01
milli (m)	10 ⁻³	0.001
micro (μ)	10 ⁻⁶	0.000001
nano (n)	10 ⁻⁹	0.00000001
pico (p)	10 ⁻¹²	0.000000000001

7. Acid-base indicators

Name	pH range	Colour change from lower pH to higher pH in range
thymol blue (1st change)	1.2–2.8	$red \rightarrow yellow$
methyl orange	3.1-4.4	$red \rightarrow yellow$
bromophenol blue	3.0-4.6	yellow \rightarrow blue
methyl red	4.4-6.2	$red \rightarrow yellow$
bromothymol blue	6.0–7.6	yellow \rightarrow blue
phenol red	6.8–8.4	yellow \rightarrow red
thymol blue (2nd change)	8.0–9.6	yellow \rightarrow blue
phenolphthalein	8.3–10.0	$colourless \rightarrow pink$

8. Representations of organic molecules

The following table shows different representations of organic molecules, using butanoic acid as an example.

Formula	Representation
molecular formula	C ₄ H ₈ O ₂
structural formula	$H = \begin{bmatrix} H & H & H \\ I & I & I \\ C & C & C & C \\ I & I & I \\ H & H & H \end{bmatrix} = \begin{bmatrix} O \\ H \end{bmatrix}$
semi-structural (condensed) formula	CH ₃ CH ₂ CH ₂ COOH or CH ₃ (CH ₂) ₂ COOH
skeletal structure	о н

9. Formulas of some fatty acids

Name	Formula	Semi-structural formula
lauric	C ₁₁ H ₂₃ COOH	CH ₃ (CH ₂) ₁₀ COOH
myristic	C ₁₃ H ₂₇ COOH	CH ₃ (CH ₂) ₁₂ COOH
palmitic	C ₁₅ H ₃₁ COOH	CH ₃ (CH ₂) ₁₄ COOH
palmitoleic	C ₁₅ H ₂₉ COOH	CH ₃ (CH ₂) ₄ CH ₂ CH=CHCH ₂ (CH ₂) ₅ CH ₂ COOH
stearic	C ₁₇ H ₃₅ COOH	CH ₃ (CH ₂) ₁₆ COOH
oleic	C ₁₇ H ₃₃ COOH	CH ₃ (CH ₂) ₇ CH=CH(CH ₂) ₇ COOH
linoleic	C ₁₇ H ₃₁ COOH	CH ₃ (CH ₂) ₄ (CH=CHCH ₂) ₂ (CH ₂) ₆ COOH
linolenic	C ₁₇ H ₂₉ COOH	CH ₃ CH ₂ (CH=CHCH ₂) ₃ (CH ₂) ₆ COOH
arachidic	C ₁₉ H ₃₉ COOH	CH ₃ (CH ₂) ₁₇ CH ₂ COOH
arachidonic	C ₁₉ H ₃₁ COOH	CH ₃ (CH ₂) ₄ (CH=CHCH ₂) ₃ CH=CH(CH ₂) ₃ COOH

10. Formulas of some biomolecules

 β -fructose

ΗÒ

ЮH

ОH

 α -glucose

ChemU3_DB_2023

aspartame

amylopectin (starch)

amylose (starch)

11. Heats of combustion of common fuels

The heats of combustion in the following table are calculated at SLC (25°C and 100 kPa) with combustion products being CO₂ and H₂O. Heat of combustion may be defined as the heat energy released when a specified amount of a substance burns completely in oxygen and is, therefore, reported as a positive value, indicating a magnitude. Enthalpy of combustion, ΔH , for the substances in this table would be reported as negative values, indicating the exothermic nature of the combustion reaction.

Fuel	Formula	State	Heat of combustion $(kJ g^{-1})$	Molar heat of combustion (kJ mol ⁻¹)
hydrogen	H ₂	gas	141	282
methane	CH ₄	gas	55.6	890
ethane	C ₂ H ₆	gas	51.9	1560
propane	C ₃ H ₈	gas	50.5	2220
butane	C ₄ H ₁₀	gas	49.7	2880
octane	C ₈ H ₁₈	liquid	47.9	5460
ethyne (acetylene)	C ₂ H ₂	gas	49.9	1300
methanol	CH ₃ OH	liquid	22.7	726
ethanol	C ₂ H ₅ OH	liquid	29.6	1360

12. Heats of combustion of common blended fuels

Blended fuels are mixtures of compounds with different mixture ratios and, hence, determination of a generic molar enthalpy of combustion is not realistic. The values provided in the following table are typical values for heats of combustion at SLC (25° C and 100 kPa) with combustion products being CO₂ and H₂O. Values for heats of combustion will vary depending on the source and composition of the fuel.

Fuel	State	Heat of combustion (kJ g ⁻¹)
kerosene	liquid	46.2
diesel	liquid	45.0
natural gas	gas	54.0

13. Energy content of food groups

Food	Heat of combustion (kJ g ⁻¹)
fats and oils	37
protein	17
carbohydrate	16

Bond	Wave number (cm ⁻¹)	Bond	Wave number (cm ⁻¹)
C-Cl (chloroalkanes)	600-800	C=O (ketones)	1680–1850
C–O (alcohols, esters, ethers)	1050–1410	C=O (esters)	1720–1840
C=C (alkenes)	1620–1680	C-H (alkanes, alkenes, arenes)	2850-3090
C=O (amides)	1630–1680	O-H (acids)	2500-3500
C=O (aldehydes)	1660–1745	O–H (alcohols)	3200-3600
C=O (acids)	1680–1740	N–H (amines and amides)	3300-3500

14. Characteristic ranges for infra-red absorption

15. ¹³C NMR data

Typical ${}^{13}C$ shift values relative to TMS = 0

These can differ slightly in different solvents.

Type of carbon	Chemical shift (ppm)
R-CH ₃	8–25
R-CH ₂ -R	20-45
R ₃ –CH	40-60
R ₄ -C	36–45
R-CH ₂ -X	15-80
R ₃ C–NH ₂ , R ₃ C–NR	35–70
R-CH ₂ -OH	50–90
RC=CR	75–95
R ₂ C=CR ₂	110–150
RCOOH	160–185
$R_{RO} > C = 0$	165–175
$R_{H} > C = O$	190–200
R ₂ C=O	205–220

16. ¹H NMR data

Typical proton shift values relative to TMS = 0

These can differ slightly in different solvents. The shift refers to the proton environment that is indicated in bold letters in the formula.

Type of proton	Chemical shift (ppm)
R–CH ₃	0.9–1.0
R-CH ₂ -R	1.3–1.4
RCH=CH–CH ₃	1.6–1.9
R ₃ -CH	1.5
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	2.0
$\begin{bmatrix} \mathbf{R} & \mathbf{C} \\ \mathbf{H} \\ \mathbf{O} \end{bmatrix}$	2.1–2.7
$R-CH_2-X (X = F, Cl, Br \text{ or } I)$	3.0-4.5
R–С H ₂ –ОН, R ₂ –С H –ОН	3.3–4.5
R-C ^{#O} NHCH ₂ R	3.2
R–O–CH ₃ or R–O–CH ₂ R	3.3–3.7
$\bigcirc \bigcirc $	2.3
R-COCH ₂ R	3.7–4.8
R–O–H	1– 6 (varies considerably under different conditions)
R–NH ₂	1–5
RHC=CHR	4.5–7.0
Ю	4.0–12.0

Type of proton	Chemical shift (ppm)
И Н	6.9–9.0
R-C ^O NHCH ₂ R	8.1
R-C ^{PO} _H	9.4–10.0
R-CO-H	9.0–13.0

17. 2-amino acids (α -amino acids)

The table below provides simplified structures to enable the drawing of zwitterions, the identification of products of protein hydrolysis and the drawing of structures involving condensation polymerisation of amino acid monomers.

Name	Symbol	Structure
alanine	Ala	CH ₃ H ₂ N—CH—COOH
arginine	Arg	$\begin{array}{c} \begin{array}{c} & & & \\ & & \\ & & \\ & \\ & \\ H_2 N - CH - COOH \end{array} \end{array} $
asparagine	Asn	$ \begin{array}{c} $
aspartic acid	Asp	$\begin{array}{c} CH_2 - COOH \\ I \\ H_2N - CH - COOH \end{array}$
cysteine	Cys	$\begin{array}{c} CH_2 - SH \\ \downarrow \\ H_2N - CH - COOH \end{array}$
glutamic acid	Glu	$\begin{array}{c} CH_2 - CH_2 - COOH \\ I \\ H_2N - CH - COOH \end{array}$
glutamine	Gln	$\begin{array}{c} & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ H_2N - CH - COOH \end{array}$
glycine	Gly	H ₂ N — CH ₂ — COOH
histidine	His	$\begin{array}{c} & ^{\text{CH}_2} & ^{\text{N}} \\ & \downarrow \\ H_2\text{N} - \text{CH}_2 - \text{COOH} \end{array}$
isoleucine	Ile	$\begin{array}{c} CH_3 - CH - CH_2 - CH_3 \\ I \\ H_2N - CH - COOH \end{array}$

Name	Symbol	Structure
leucine	Leu	$CH_{3} - CH - CH_{3}$ CH_{2} $H_{2}N - CH - COOH$
lysine	Lys	$\begin{array}{c} CH_2 - CH_2 - CH_2 - CH_2 - NH_2 \\ \downarrow \\ H_2N - CH - COOH \end{array}$
methionine	Met	$\begin{array}{c} CH_2 - CH_2 - S - CH_3 \\ I \\ H_2N - CH - OOH \end{array}$
phenylalanine	Phe	H_2N – CH – COOH
proline	Pro	HN COOH
serine	Ser	$H_2 N - CH_2 - OH$ $H_2 N - CH - COOH$
threonine	Thr	СH ₃ —СН—ОН H ₂ N—СН—СООН
tryptophan	Trp	HN CH ₂ H ₂ N-CH-COOH
tyrosine	Tyr	$H_2N - CH - COOH$
valine	Val	$CH_{3} - CH - CH_{3}$ $H_{2}N - CH - COOH$

END OF DATA BOOKLET