

Trial Examination 2023

VCE Chemistry Units 3&4

Written Examination

Suggested Solutions

SECTION A - MULTIPLE-CHOICE QUESTIONS

1 A B C D	11 A B C D	21 A B C D
2 A B C D	12 A B C D	22 A B C D
3 A B C D	13 A B C D	23 A B C D
4 A B C D	14 A B C D	24 A B C D
5 A B C D	15 A B C D	25 A B C D
6 A B C D	16 A B C D	26 A B C D
7 A B C D	17 A B C D	27 A B C D
8 A B C D	18 A B C D	28 A B C D
9 A B C D	19 A B C D	29 A B C D
10 A B C D	20 A B C D	30 A B C D

Neap[®] Education (Neap) Trial Exams are licensed to be photocopied or placed on the school intranet and used only within the confines of the school purchasing them, for the purpose of examining that school's students only for a period of 12 months from the date of receiving them. They may not be otherwise reproduced or distributed. The copyright of Neap Trial Exams remains with Neap. No Neap Trial Exam or any part thereof is to be issued or passed on by any person to any party inclusive of other schools, non-practising teachers, coaching colleges, tutors, parents, students, publishing agencies or websites without the express written consent of Neap.

Question 1 D

D is correct. Similar to natural gas, coal seam gas is composed largely of methane gas and is used to generate electricity in power plants.

A and B are incorrect. Coal seam gas is a deposit of methane gas that naturally occurs near coal deposits.

C is incorrect. Coal seam gas is not currently used as a raw material in manufacturing chemicals but is mainly used as a fuel.

Question 2 B

B is correct. Rechargeable cells use spontaneous redox reactions to generate electricity and use electrical energy to drive non-spontaneous redox reactions to store energy. These latter reactions are electrolytic in nature.

A is incorrect. Fuel cells cannot be recharged with an input of electrical energy and are therefore not a type of secondary cell.

C is incorrect. Primary cells are often less efficient than fuel cells. In a primary cell an appreciable amount of chemical energy is converted to heat and wasted.

D is incorrect. Some galvanic cells use electrodes that are reactants in the overall redox reaction; therefore, galvanic cells electrodes are not always inert.

Question 3 D

D is correct and **C** is incorrect. An omega-6 fatty acid has a C=C bond between the sixth and seventh carbon atoms from the omega end of the molecule. The omega end does not have the COOH group and is situated opposite to the alpha end, which has the COOH group.

A and B are incorrect. The 6 in omega-6 refers to the position of the C=C bond, not the number of double bonds present.

Question 4 B

B is correct. Aspartame is about 200 times sweeter than an equivalent mass of sucrose and so less aspartame is required to achieve the same level of sweetness.

A is incorrect. Aspartame is about 200 times sweeter than an equivalent mass of sucrose.

C is incorrect. Aspartame has approximately the same energy content as sucrose on a mass basis, not on a mole basis.

D is incorrect. Aspartame is soluble in water and is absorbed by the body.

Question 5 D

D is correct. Aspartame is a methyl ester of a dipeptide. During a hydrolysis reaction, the ester link and the peptide bond are broken, producing an alcohol and two amino acids.

A and **B** are incorrect. Aspartame contains a peptide bond and an ester link as it is a methyl ester of a dipeptide.

C is incorrect. The basic structure of monosaccharides is different to a methyl ester of a dipeptide.

Question 6 A

A is correct. The hydroxyl groups in the vitamin C molecule enable the formation of hydrogen bonds with water molecules.

B is incorrect. Vitamin D2 has 28 carbon atoms and vitamin D3 has 27 carbon atoms, so their molecular formulas must be different.

C is incorrect. The hydroxyl group in vitamin D is polar but most of the molecule is non-polar.

D is incorrect. Vitamin C is water soluble and so is not stored in fat tissue.

Question 7 B

B is correct. The porous electrodes provide a large surface area that allows gaseous reactants to penetrate and increases contact between the reactants. This results in an efficient transfer of electrons between electrodes along the wire.

A is incorrect. The overall cell reaction and the combustion reaction are identical.

C is incorrect. Electrons do not flow through the electrolyte; they travel via the external circuit along a wire.

D is incorrect. Hydrogen ions are produced at one electrode and consumed at the other. Therefore, there is no overall consumption of hydrogen ions and the pH of the acidic electrolyte does not increase.

Question 8 D

D is correct. A food constituent is classified as essential if the body is unable to make the compound, and it must therefore be consumed in a person's diet.

A is incorrect. Essential food constituents are sourced from animals and plants.

B is incorrect. The mass of essential constituents is relatively small compared to other food sources and so would not make up a large proportion of the diet.

C is incorrect. The largest sources of energy in the body are carbohydrates and fats, not essential food constituents.

Question 9 D

D is correct. The results of the trials are all close in value and therefore close to the average measured value. This is the definition of precision.

A and C are incorrect. The standard value of the density of water at 25°C is 0.997 g mL⁻¹, while the average measured value from the experiment is 1.101 g mL⁻¹. The experimental results are not accurate as accuracy refers to the closeness of measured values to a standard value.

B is incorrect. This is not the definition of precision.

Question 10 C

The use of calibrated glassware to take readings in volumetric analysis is a common source of random error. Sodium hydroxide pellets absorb moisture from the air and react with carbon dioxide gas to produce sodium carbonate. Thus, the composition of the hydroxide pellets would be uncertain and would be a source of systematic error.

Question 11 B

B is correct. Chloride ions travel to the positively charged anode in the electrolytic cell and are discharged to produce chlorine gas.

A is incorrect. Sodium ions are attracted to the negatively charged cathode where they gain electrons to form sodium metal.

C and D are incorrect. There is no water present in a molten electrolyte; therefore, neither hydrogen gas nor oxygen gas would be formed.

Question 12 A

 $n(e^{-}) = 1 \mod (1 \text{ Faraday is the charge on } 1 \mod \text{of electrons.})$

Cu²⁺(aq) + 2e⁻ → Cu(s) $n(Cu) = \frac{1}{2} \times n(e^{-}) = \frac{1}{2} \times 1 = \frac{1}{2} \text{ mol}$ $m(Cu) = n \times M = \frac{1}{2} \times 63.5 = 31.75 \text{ g} = 32 \text{ g}$

Question 13 D

D is correct. Using the electrochemical series, the reaction is $Cd^{2+} + Mn \rightarrow Cd + Mn^{2+}$. Mn is oxidised and the electrons flow to the Cd electrode.

A is incorrect. The mass of Mn decreases due to oxidation.

B is incorrect. Cd^{2+} ions are stronger oxidising agents than water molecules and Mn is a stronger reducing agent than water molecules. Thus, neither oxygen nor hydrogen gases would form at the electrodes.

C is incorrect. Positive ions (cations) move towards the Cd/Cd^{2+} half-cell to replace the Cd^{2+} ions used in the half-cell reaction, and therefore maintain the neutral charge of the half-cell.

Question 14 A

A is correct. This is the semi-structural (condensed) formula of butanoic acid. A chiral carbon atom has four different atoms or groups of atoms bonded to it. None of the carbon atoms in a butanoic acid molecule has this arrangement of atoms.

B, C and D are incorrect. These molecules each have one chiral carbon atom.

Question 15 D

A catalyst lowers the activation energy (M) but has no effect on the enthalpy change of the reaction (N) or the energy of the products (Q).

Question 16 A

A is correct and B is incorrect. The discharge reaction is $Zn + Ag_2O \rightarrow ZnO + 2Ag$. The reaction occurring at the positive electrode is a reduction reaction.

C and D are incorrect. These options show oxidation reactions.

Question 17 A

While the concentrations of the reactants and products cannot be calculated because the volume of the vessel is not specified, in this instance, the volume would cancel out in the equilibrium expression. Thus, the number of moles can be used to calculate the value of the reaction quotient (Q).

$$Q = \frac{\left[\mathrm{IBr}\right]^2}{\left[\mathrm{Br}_2\right]\left[\mathrm{I}_2\right]} = \frac{1^2}{1 \times 1} = 1$$

This is lower than the value of the equilibrium constant (1.2×10^2) . Therefore, the system is not at equilibrium and will move towards the products; in the equilibrium expression, the numerator becomes larger and the denominator becomes smaller, heading towards the final value of 1.2×10^2 .

Question 18 B

Burning propane, C₃H₈, releases 50.5 kJ per gram.

amount of energy released = $50.5 \times 2.78 = 140.39$ kJ = 140.390 J. energy used to heat the water = $mc\Delta T = 500 \times 4.18 \times \Delta T = 140.390$ J $\Delta T = \frac{140.390}{500 \times 4.18}$

Question 19 C

C is correct. The area under the graph to the right of E_a represents the number of particles with sufficient energy to cause a successful collision. The lowered temperature of the gas will reduce this number and thus decrease the area.

 $=67^{\circ}C$

A is incorrect. Decreasing the temperature will move the peak to the left.

B is incorrect. The area under the graph represents the total number of particles. Since the particles are in a sealed container, their number will not change.

D is incorrect. Decreasing the temperature will cause the graph to narrow, and the peak to rise and move to the left.

Question 20 A

A is correct. Lowering the temperature decreases the kinetic energy of the particles. This causes fewer collisions with the walls of the container and so the gas pressure decreases.

B, **C** and **D** are incorrect. The distribution graph does not provide information about the value of the equilibrium constant, K_c ; the enthalpy change of the reaction or the position of equilibrium.

Question 21 C

In a titration, the volumetric flask and the conical flask receive a set number of moles of reactants, and it does not matter if these pieces of glassware are still wet with water. Pipettes and burettes should be rinsed with the solutions that they dispense.

Question 22 B

B is correct. The oxidation reaction is $C_6H_8O_6(aq) \rightarrow C_6H_6O_6(aq) + 2H^+(aq) + 2e^-$ and therefore vitamin C must have been the reducing agent because it was oxidised.

A and C are incorrect. The oxidation numbers of hydrogen (+1) and oxygen (-2) did not change.

D is incorrect. The triiodide ion was the oxidising agent and so it underwent reduction, not oxidation.

Question 23 C

C is correct. Biodiesel is composed of an alcohol and fatty acid joined by an ester link. The polar nature of the ester link enables moisture from the atmosphere to be absorbed through intermolecular attraction with water molecules. Biodiesel molecules are attracted to each other because of this region of polarity and so biodiesel's viscosity is higher than liquids that are non-polar. Fatty acid components that have double bonds are susceptible to attack from oxygen in the air, leading to degradation.

A, **B** and **D** are incorrect. These fuels are derived from crude oil and are composed of hydrocarbon chains, which are non-polar. There is no attraction to water from the atmosphere, low intermolecular attraction by dispersion forces and less susceptibility to degradation than biodiesel.

Question 24 C

 $\Delta T = 22.5 - 21.0 = 1.5^{\circ} \text{C}$

energy absorbed by the reaction = $35 \times \frac{2.50}{101.1} = 0.8655 \text{ kJ}$

CF =
$$\frac{E}{\Delta T} = \frac{0.8655}{1.5} = 0.5770 \text{ kJ} \circ \text{C}^{-1} = 577 \text{ J} \circ \text{C}^{-1}$$

Question 25 C

C is correct. The equation specifies that 1452 kJ is released when 4 mol of water is produced.

Therefore, when 1 mol (18 g) of water is produced, $\frac{1452}{4} = 363 \text{ kJ}$ is released.

A is incorrect. The reaction is exothermic and so energy is released, not absorbed.

B is incorrect. The equation specifies that 1452 kJ is released when 2 mol of methanol reacts.

D is incorrect. The equation specifies that 1452 kJ is released when 2 mol (88 g) of carbon dioxide is produced.

Question 26 A

Gaseous methanol changing to liquid methanol releases energy and, therefore, the enthalpy change, ΔH , is negative. Adding the equations for the two reactions (methanol gas changing to liquid methanol, and the combustion of liquid methanol) involves adding two negative values to find the overall ΔH . The ΔH would therefore be more negative than -1452 kJ mol⁻¹.

Question 27 A

A is correct. α -amino acids have the NH₂ and COOH groups attached to the same carbon atom together with a side group. In this molecule, the two hydroxyl groups and one amino group enable intermolecular hydrogen bonding to form.

B is incorrect. There are no sulfur atoms in the side groups, therefore, disulfide bonding cannot occur.

C and D are incorrect. The two constituents are α -amino acids.

Question 28 C

The order of decreasing reducing agent strength is Q > N > P > R. This order is derived from the results for each cell, as shown in the following table.

Half-cell combination	Positive electrode	Reducing agent strength
1 and 3	metal N	Q > N
2 and 4	metal R	P > R
1 and 2	metal P	N > P

Question 29 B

Statement I is correct. Electricity is produced from coal, natural gas, biogas and biomass.

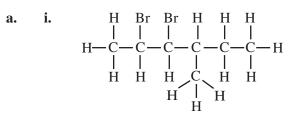
Statement II is correct. Any incomplete combustion of a fuel produces carbon monoxide as one of the products.

Statement III is incorrect. Fatty acids from plants or animals can undergo an esterification reaction with an alcohol to produce a biodiesel.

Statement IV is correct. Petroleum gas is a fossil fuel and, therefore, is not renewable.

Question 30 C

5000 MJ requires the combustion of $\frac{5000}{3.329} = 1501.9525$ mol of pentan-1-ol.


From the molecular formula of pentan-1-ol, the combustion of 1 mol produces 5 mol of carbon dioxide.

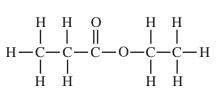
 $n(\text{CO}_2) = 5 \times 1501.9 = 7509.7627 \text{ mol}$

 $m(\text{CO}_2) = n \times M = 7509.7627 \times 44.0 = 330\ 429.5584\ \text{g} = 0.330\ \text{tonne}$

SECTION B

Question 1 (7 marks)

4-chloro-3-methylhexan-1-ol


1 mark

1 mark

b.

ii.

i.

1 mark

1 mark

ii. CH₃CH₂OH 1 mark

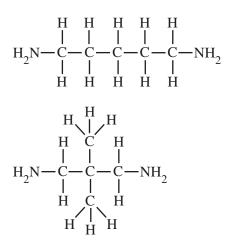
iii. 1,2-dichloroethane

iv.
$$2C_2H_5COOH(aq) + Na_2CO_3(aq) \rightarrow 2C_2H_5COONa(aq) + CO_2(g) + H_2O(l)$$

2 marks

1 mark for the correct reactants and products. 1 mark for correct balancing and state symbols.

8


Question 2 (10 marks)

a.	i.	nitrogen to hydrogen bond (N-H)	
	ii.	An –NH ₂ group will accept a proton in an acid–base reaction.	1 mark
		As there are two hydrochloric acid molecules reacting, it can be concluded that compound Q has two $-NH_2$ groups.	1 mark
b.	i.	The molecular ion peak shows the mass-to-charge (m/z) value of the complete molecule of compound Q with a positive charge. The relative molecular mass of compound Q is 102.	1 mark
	ii.	$\rm NH_2CH_2^+$	1 mark
	iii.	the presence of compound Q molecules that contain isotopes of the various atoms that compose the molecule	1 mark
		Note: These isotopes (for example, ^{13}C and ^{15}N) would have a larger relative mass and produce compound Q molecules to	

m/z values that are slightly greater than 102 with minor signals.

c. three

d. Any one of:

2 marks 1 mark for a symmetrical molecule with two $CH_2 NH_2$ groups. 1 mark for a symmetrical molecule with a C_5H_{10} hydrocarbon section.

e. The ¹H-NMR spectrum would provide information about the distribution of hydrogen atoms in the molecule and therefore allow the correct structure to be confirmed. 1 mark

1 mark

Question 3 (9 marks)

a. i. Any one of:

- triglycerides
- fats
- lipids
- esters

1 mark

1 mark

1 mark

- ii. Compound B is a glycerol, which has three hydroxyl groups per molecule.
 1 mark These hydroxyl groups form hydrogen bonds with water molecules, which results in the molecule being highly soluble in water.
 1 mark
- iii.

b.

 $\begin{array}{c} H & O \\ H - C - O - C - C_{17} H_{29} \\ H \\ H \end{array}$

iv.Each fatty acid has 3 C=C bonds per molecule.1 markEach molecule of compound A has 9 C=C bonds per molecule; therefore,
there are 13.5 mol of C=C bonds in 1.5 mol of compound A.1 markEach H2 is added across a C=C bond, therefore, $n(H_2) = 13.5$ mole
and $m(H_2) = 13.5 \times 2.0 = 27$ g1 markFor example:The sourcing of diesel fuel requires the collection and refining of crude oil, which has
a significant environmental impact, as the process requires massive infrastructure
and extensive use of energy resources while also being a major source of toxic air
pollutants.1 mark

In comparison, the sourcing of biodiesel requires farming and harvesting crops, and transporting grains to processing centres; these activities have less impact on the environment than diesel fuel sourcing. In addition, if waste animal fats and vegetable oils are used to produce biodiesel, this reduces waste and recycles materials, further reducing the environmental impact.

Question 4 (11 marks)

a.	+5	(sum of oxidation numbers $= -2 = 2 \times oxidation$ number (S) $+ 6 \times (-2)$; therefore,	
	oxie	$dation \ number \ (S) = +5)$	1 mark
Ь	i	$2SO_{(g)} + 2H_{(g)} \rightarrow S_{(g)} = \frac{2}{(2g)} + 4H^{+}(2g) + 2e^{-1}$	1 mark

b. i.
$$2SO_2(g) + 2H_2O(1) \rightarrow S_2O_6^{-1}(aq) + 4H^{-1}(aq) + 2e$$
 1 mark

ii.
$$2H^+(aq) + 2e^- \rightarrow H_2(g)$$
 1 mark

c. i. Any one of:

d.

e.

- carbon
- graphite

		1 mark
ii.	Iron is a reasonably strong reducing agent and could react with the hydrogen ions in the cell.	1 mark
i.	In the electrolysis reaction, hydrogen ions are produced.	1 mark
	The increase in the concentration of hydrogen ions causes the pH of the electrolyte to decrease.	1 mark
ii.	H_3O^+ ions are a reactant in the equilibrium reaction. According to Le Chatelier's principle, as hydrogen ions are produced by the cell reaction, this would have caused the equilibrium reaction to move forward to partially oppose the change.	1 mark
	This removal of hydrogen ions from the electrolyte as they formed kept the pH relatively stable.	1 mark
	wable resources can be produced from materials that are generated repeatedly by al processes at a rate faster than they are used.	1 mark
	e is only a finite amount of coal and metal ores; thus, the hydrogen gas generated the electrolysis of the waste gases is also finite and not renewable.	1 mark

Question 5 (6 marks)

a. i.
$$PbO_2(s) + 4H^+(aq) + 2SO_4^{2-}(aq) + Pb(s) \rightarrow 2PbSO_4(s) + 2H_2O(l)$$
 1 mark

ii.
$$2.05 \text{ V} (voltage = 1.69 - (-0.36) = 2.05 \text{ V})$$
 1 mark

b. The standard electrode potential, E^0 , values in the electrochemical series are determined under standard conditions. The lead–acid battery uses 4 M sulfuric acid, instead of the 1 M standard condition, so the voltages are different (*that is*, $6 \times 2.05 = 12.3$ V compared to 14 V).

c.
$$PbSO_4(s) + 2H_2O(l) \rightarrow PbO_2(s) + 4H^+(aq) + SO_4^{2-}(aq) + 2e^-$$
 1 mark

```
d. For example, any one of:
```

- The lead oxide formed during recharging may not be deposited with 100% efficiency. Each time the battery is recharged, a reduced amount of lead oxide is deposited until there is eventually an insufficient amount is deposited to allow the battery to function.
- Not all of the product of discharge (PbSO₄) may remain in contact with the electrode. Therefore, each time the battery is recharged, it is not fully recharged.

2 marks 1 mark for identifying the factor. 1 mark for explaining the factor.

1 mark

Question 6 (6 marks)

a.	ether OR glycosidic	1 mark
b.	The weakest attraction to the stationary phase results in the compound moving with the solvent, that is, it has the shortest retention time.	1 mark
	Dextrins are least attracted to the stationary phase.	1 mark
c.	The peak area in the graph relates to the concentration of each compound.	1 mark
	Ethanoic acid has the smallest peak area and therefore has the lowest concentration (assuming the column and detector have the same sensitivity for all compounds shown).	1 mark
d.	Cellulose is a structural material in plants and consists of thousands of monosaccharide monomers bonded together. Its large size prevents it from dissolving in the solvent used	
	in the analysis and so prevents analysis with HPLC.	1 mark

Question 7 (9 marks)

ii.

a.	energy from carbohydrates = $16 \times 48.70 = 779.2 \text{ kJ}$	1 mark
	$\%$ energy = $\frac{779.2}{1080} \times 100 = 72\%$	1 mark
b.	Palmitic acid is a saturated fatty acid as it has no C=C bonds. Palmitoleic acid is an unsaturated fatty acid as it has a C=C bond. Each acid could be shaken separately with bromine water, which has a red-brown colour.	1 mark
	Palmitic acid would have no effect, whereas palmitoleic acid would cause the bromine water to de-colourise as the bromine is added across the C=C bond in the fatty acid molecule.	1 mark
c.	i. Gly-Val-Asp	1 mark

$$H H O$$

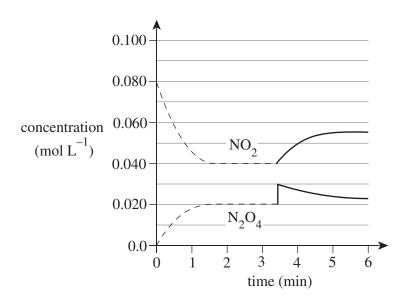
$$| H H O$$

$$| H - N - C - C - O^{-}$$

$$| H - C - H$$

$$| C = O$$

$$| O^{-}$$


2 marks 1 mark for selecting aspartic acid. 1 mark for the deprotonation of both carboxyl groups.

d. The glycaemic index (G.I.) is a rating for how readily glucose is released by the body.
1 mark The low G.I. bread will have a larger proportion of complex carbohydrates than the bread with the higher G.I. For example, low G.I. foods contain more starch and less sugars. The complex carbohydrates take longer for the body to digest and so the glucose is released very slowly into the blood.
1 mark

Question 8 (10 marks)

a.	i.	When the volume of the equilibrium mixture was halved, the intensity of the brown colour increased.	1 mark
		This would have been caused by the coloured molecules being put into a smaller volume.	1 mark
	ii.	Halving the volume results from doubling the pressure. Therefore, the equilibrium mixture would have responded by favouring the side of the reaction that has fewer particles of gas in order to partially oppose the increase in pressure.	1 mark
		The colourless product was favoured and thus the brown colour would have been less intense than immediately after the volume change, but nonetheless more intense than before the change.	1 mark
b.	i.	$K_{\rm c} = \frac{[N_2O_4]}{[NO_2]^2}$	1 mark
		$=\frac{0.020}{0.040^2}=12.5=13\mathrm{M}^{-1}$	1 mark
	ii.	The equilibrium constant value at T_2 is greater than 13 and so at $T_2 [N_2O_4]$ must have increased and $[NO_2]$ must have decreased, that is, the forward reaction was favoured.	1 mark

The forward reaction is favoured when an exothermic equilibrium reaction is cooled because the system responds to partially oppose the decrease in heat. This means that the formation of N_2O_4 is exothermic. 1 mark

2 marks

1 mark for correct placement of the N₂O₄ graph. Note: The graph of N₂O₄ should fall gradually to plateau before 6 minutes. The plateau should be slightly above 0.020.
 1 mark for the correct placement of the NO₂ graph. Note: The graph of NO₂ should rise gradually to plateau before 6 minutes. The plateau should be slightly below 0.060.

c.

Question 9 (11 marks)

a. The complete reaction produces 48 mL of oxygen at standard laboratory conditions (SLC).

$$n(O_2) = \frac{V}{V_m} = \frac{48}{24\,800} = 1.9355 \times 10^{-3} \,\mathrm{mol}$$
 1 mark

$$n(H_2O_2) = 2 \times n(O_2) = 1.9355 \times 10^{-3} \times 2 = 3.8710 \times 10^{-3} \text{ mol}$$
 1 mark

$$c(\mathrm{H}_{2}\mathrm{O}_{2}) = \frac{n}{V} = \frac{3.8710 \times 10^{-3}}{0.0500} = 0.0774 \text{ mol } \mathrm{L}^{-1} = 0.077 \text{ mol } \mathrm{L}^{-1}$$
 1 mark

- **b.** the rate of oxygen gas production at SLC
- i. The Cu catalyst must be used as fine particles (such as filings). A wire, block c. or sheet of Cu must not be used as it would affect the experiment's validity. 1 mark A valid experiment changes only one variable so that any result can be linked to the change. If two variables are changed at the same time (in this case, the nature of the catalyst and the form of the catalyst), then the results cannot be linked to one variable. 1 mark ii. For example: repeating the experiment to get further results and taking the average 1 mark d. i. At the start of a reaction, there are many reactant particles available to collide, and a high proportion of successful collisions produces product particles. 1 mark As the reaction proceeds, there are fewer reactant particles available to collide and so there are fewer successful collisions, generating fewer product particles. Therefore, the rate of reaction decreases. 1 mark ii. The reaction using CuO as catalyst is still in the initial phase of the reaction, so it is much slower than the other reaction catalysed by Cu. 1 mark As time proceeds, the graph for the CuO catalyst will plateau like the other graph, indicating a slowing of the rate of reaction. 1 mark

1 mark

Question 10 (11 marks)

a.		tertiary structure of the protein from which an enzyme is made has an active site, kible cavity formed on the surface of the enzyme.	1 mark
		n the substrate molecule collides with the enzyme molecule, the active site changes ape to fit the substrate snugly.	1 mark
	energ whic	k bonds form between the substrate and the enzyme, lowering the reaction activation gy, and so the reaction is catalysed. The products of the reaction leave the active site, h then returns to being a flexible cavity.	1 mark
	Any	one of:	
	•	In the dehydrogenation reaction of ethanol to form ethanal, two hydrogen ions and two electrons are removed from the ethanol molecule. The coenzyme NAD helps the process by accepting a hydrogen ion and two electrons, converting from the NAD ⁺	
		form to NADH.	1 mark
		The NADH will later release the hydrogen and be reformed as NAD ⁺ to enable further coenzyme activity.	1 mark
	•	The vitamin C coenzyme binds to the surface of the enzyme, either directly to part of the active site, or to another part of the enzyme causing a change to the active site.	1 mark
		The enzyme becomes active and is able to bind to the substrate and subsequently catalyse the reaction.	1 mark
b.	For	example, any two of:	
	•	Enzymes are made of protein.	
		Coenzymes are not made of protein (for example, vitamin C).	
	•	Enzymes are unchanged after their role in catalysis.	
		Coenzymes may be altered after their role in catalysis (for example, NADH, which may later be restored to its useful coenzyme form).	
	•	Enzymes form weak bonds with the substrate, lowering activation energy for the reaction.	
		Coenzymes may not always directly interact with the substrate.	
		1 mark for each difference	2 marks ce stated.
c.	i.	At 15°C, the reactant molecules have very little energy and are moving slowly, so collisions are relatively infrequent.	1 mark
		As a result, interactions with the enzyme molecules do not occur as often or with sufficient energy, and so catalysis cannot happen optimally.	1 mark
	ii.	At 65°C, the weak bonding holding the secondary and tertiary structures of the enzyme has been disrupted progressively and so many of the active sites on the enzyme molecules have been altered.	1 mark
		As a result, the reaction cannot be efficiently catalysed with fewer active sites available and so the yield is low.	1 mark

Trial Examination 2023

VCE Chemistry Units 3&4

Written Examination

Data Booklet

Instructions

This data booklet is provided for your reference. A question and answer booklet is provided with this data booklet.

Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic devices into the examination room.

Neap[®] Education (Neap) Trial Exams are licensed to be photocopied or placed on the school intranet and used only within the confines of the school purchasing them, for the purpose of examining that school's students only for a period of 12 months from the date of receiving them. They may not be otherwise reproduced or distributed. The copyright of Neap Trial Exams remains with Neap. No Neap Trial Exam or any part thereof is to be issued or passed on by any person to any party inclusive of other schools, non-practising teachers, coaching colleges, tutors, parents, students, publishing agencies or websites without the express written consent of Neap.

1. Periodic table of the elements

$\begin{array}{c} \mathbf{He}^{2}\\ \mathbf{He}^{4.0}\\ \mathbf{He}^{4.0}\\ \mathbf{Ne}\\ NE$	36 36 83.8 krypton 54 131.3 xenon	$ 86\\ Rn \\ 1222 \\ radon \\ 118 \\ 0g \\ 0$	
• • • • • • • • • • • • • • • • • • •	Br 35 Br 79.9 bromine 53 53 126.9 iodine	$\begin{array}{c} 85\\ A1\\ 210)\\ astatine\\ 117\\ T2\\ (294)\\ tennessine \end{array}$	$\begin{array}{c} \textbf{71}\\ \textbf{Lu}\\ \textbf{175.0}\\ \textbf{175.0}\\ \textbf{lutetium}\\ \textbf{103}\\ \textbf{Lr}\\ \textbf{Lr}\\ \textbf{lawrencium}\\ \textbf{lawrencium} \end{array}$
8 0000 00000000000000000000000000000000	2 ×		70 YB 173.1 102 NO (259) 102 NO (259) 102 102 102
$\mathbf{P}_{\mathbf{IS}}^{1}$	As A	<u> </u>	69 168.9 168.9 101 101 101 mendelevium n
Carbon 28.1 28.1 28.1 28.1	50		68 67 167.3 erbium 100 100 Em
5 B boron 13 A 13	allium allium	n t	$\begin{array}{c} 67\\ H0\\ 164.9\\ holmium\\ \mathbf{FS}\\ \mathbf{FS}\\ \mathrm{einsteinium} \end{array}$
	20 20 20 20 20 20 20 20 20 20 20 20 20 2		$\begin{array}{c c} & & & & \\ & & & & \\ & & & & \\ & & & & $
	29 63.5 copper 29 63.5 107.9 silver	LOC	65 TD 158.9 97 97 8k (247) berkelium
nent	28 58.7 nickel 46 Pd 106.4	-0	$\begin{array}{c} 64 \\ 64 \\ 157.3 \\ gadolinium \\ 96 \\ Cm \\ curium \end{array}$
symbol of element name of element	27 28:9 58:9 58:9 58:9 58:9 102:9 mm	=	63 Eu 152.0 europium 95 Am Am americium
79 Au ^{197,0} syr ^{197,0} nar	26 25 55.8 55.8 55.8 55.8 55.8 100 101.1 mun ruthenium		62 Sm 150.4 samarium 94 94 (244) plutonium
	25 Im 25 54.9 54.9 54.9 143 0 7 6 (98) Im technetium	75 Partial 186.2 Partial 186.2	$\begin{array}{c} 61\\ Pm\\ Promethium\\ 93\\ Np\\ neptumium\\ neptumium\\ \end{array}$
atomic number relative atomic mass	Cr Cr 32.0 52.0 42 42 40 96.0 m molydenum	74 106 183.8 183.8 106 50 106 8 269 m seaborgium	60 Nd 144.2 neodymium 92 U uranium
relat	23 m vanadium vanadium vanadium vanadium motion miobium		59 Praseodymium 91 231.0 protactinium
	22 47.9 11 11 11 12 12 12 12 12 12 12	_	$\begin{array}{c} 58\\ \mathbf{Ce}\\ \mathbf{Ce}\\ 140.1\\ 70\\ 100\\ 10$
	21 21 85.0 85.0 85.0 88.9 mm ytrium	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	$\begin{bmatrix} 57\\ La\\ 138.9\\ lanthanum\\ 89\\ AC\\ (227)\\ actinum\\ actinum\\ (227)\\ actinum\\ (227)\\ actinum\\ (227)$
$\stackrel{\text{(en)}}{=} \begin{array}{c} \mathbf{Be} \\ \mathbf$			
H H Bulker Hydrogen Bulker Hithium Na 23.0	39.1 BC 33.1 potassium 37 Rb 85.5 85.5 rubidium	$\begin{array}{c} 55\\ \mathbf{CS}\\ \mathbf{CS}\\ 132.9\\ 71\\ 71\\ 723\\ $	

Copyright © 2023 Neap Education Pty Ltd

2. Electrochemical series

Reaction	Standard electrode potential (E^0) in volts at 25°C
$F_2(g) + 2e^- \rightleftharpoons 2F^-(aq)$	+2.87
$H_2O_2(aq) + 2H^+(aq) + 2e^- \rightleftharpoons 2H_2O(l)$	+1.77
$Au^+(aq) + e^- \rightleftharpoons Au(s)$	+1.68
$Cl_2(g) + 2e^- \rightleftharpoons 2Cl^-(aq)$	+1.36
$O_2(g) + 4H^+(aq) + 4e^- \rightleftharpoons 2H_2O(l)$	+1.23
$Br_2(l) + 2e^- \rightleftharpoons 2Br^-(aq)$	+1.09
$Ag^+(aq) + e^- \rightleftharpoons Ag(s)$	+0.80
$Fe^{3+}(aq) + e^{-} \rightleftharpoons Fe^{2+}(aq)$	+0.77
$O_2(g) + 2H^+(aq) + 2e^- \rightleftharpoons H_2O_2(aq)$	+0.68
$I_2(s) + 2e^- \rightleftharpoons 2I^-(aq)$	+0.54
$O_2(g) + 2H_2O(l) + 4e^- \rightleftharpoons 4OH^-(aq)$	+0.40
$Cu^{2+}(aq) + 2e^{-} \rightleftharpoons Cu(s)$	+0.34
$\operatorname{Sn}^{4+}(\operatorname{aq}) + 2e^{-} \rightleftharpoons \operatorname{Sn}^{2+}(\operatorname{aq})$	+0.15
$S(s) + 2H^{+}(aq) + 2e^{-} \rightleftharpoons H_2S(g)$	+0.14
$2\text{H}^+(\text{aq}) + 2\text{e}^- \rightleftharpoons \text{H}_2(\text{g})$	0.00
$Pb^{2+}(aq) + 2e^{-} \rightleftharpoons Pb(s)$	-0.13
$\operatorname{Sn}^{2+}(\operatorname{aq}) + 2e^{-} \rightleftharpoons \operatorname{Sn}(s)$	-0.14
$Ni^{2+}(aq) + 2e^{-} \rightleftharpoons Ni(s)$	-0.25
$\operatorname{Co}^{2+}(\operatorname{aq}) + 2e^{-} \rightleftharpoons \operatorname{Co}(s)$	-0.28
$Cd^{2+}(aq) + 2e^{-} \rightleftharpoons Cd(s)$	-0.40
$Fe^{2+}(aq) + 2e^{-} \rightleftharpoons Fe(s)$	-0.44
$Zn^{2+}(aq) + 2e^{-} \rightleftharpoons Zn(s)$	-0.76
$2H_2O(1) + 2e^- \rightleftharpoons H_2(g) + 2OH^-(aq)$	-0.83
$Mn^{2+}(aq) + 2e^{-} \rightleftharpoons Mn(s)$	-1.18
$Al^{3+}(aq) + 3e^{-} \rightleftharpoons Al(s)$	-1.66
$Mg^{2+}(aq) + 2e^{-} \rightleftharpoons Mg(s)$	-2.37
$Na^+(aq) + e^- \rightleftharpoons Na(s)$	-2.71
$Ca^{2+}(aq) + 2e^{-} \rightleftharpoons Ca(s)$	-2.87
$K^+(aq) + e^- \rightleftharpoons K(s)$	-2.93
$\text{Li}^+(aq) + e^- \rightleftharpoons \text{Li}(s)$	-3.04

3. Chemical relationships

Name	Formula
number of moles of a substance	$n = \frac{m}{M}; n = cV; n = \frac{V}{V_{\rm m}}$
universal gas equation	pV = nRT
calibration factor (CF) for bomb calorimetry	$CF = \frac{VIt}{\Delta T}$
heat energy released in the combustion of a fuel	$q = mc \Delta T$
enthalpy of combustion	$\Delta H = \frac{q}{n}$
electric charge	Q = It
number of moles of electrons	$n(e^{-}) = \frac{Q}{F}$
% atom economy	$\frac{\text{molar mass of desired product}}{\text{molar mass of all reactants}} \times \frac{100}{1}$
% yield	$\frac{\text{actual yield}}{\text{theoretical yield}} \times \frac{100}{1}$

4. Physical constants and standard values

Name	Symbol	Value
Avogadro constant	$N_{\rm A}$ or L	$6.02 \times 10^{23} \text{ mol}^{-1}$
charge on one electron (elementary charge)	е	$-1.60 \times 10^{-19} \text{ C}$
Faraday constant	F	96 500 C mol^{-1}
molar gas constant	R	$8.31 \text{ J mol}^{-1} \text{ K}^{-1}$
molar volume of an ideal gas at SLC (25°C and 100 kPa)	V _m	$24.8 \mathrm{L} \mathrm{mol}^{-1}$
specific heat capacity of water	С	4.18 kJ kg ⁻¹ K ⁻¹ or 4.18 J g ⁻¹ K ⁻¹
density of water at 25°C	d	997 kg m ^{-3} or 0.997 g mL ^{-1}

5. Unit conversions

Measured value	Conversion
0°C	273 К
100 kPa	750 mm Hg or 0.987 atm
1 litre (L)	$1 \text{ dm}^3 \text{ or } 1 \times 10^{-3} \text{ m}^3 \text{ or } 1 \times 10^3 \text{ cm}^3 \text{ or } 1 \times 10^3 \text{ mL}$

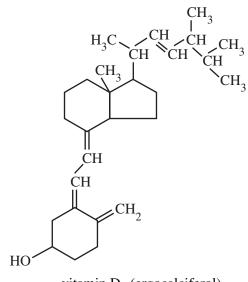
6. Metric (including SI) prefixes

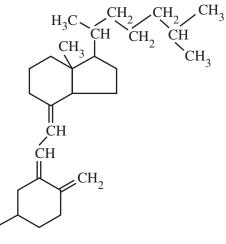
Metric (including SI) prefixes	Scientific notation	Multiplying factor
giga (G)	109	1 000 000 000
mega (M)	10 ⁶	1 000 000
kilo (k)	10 ³	1000
deci (d)	10 ⁻¹	0.1
centi (c)	10 ⁻²	0.01
milli (m)	10 ⁻³	0.001
micro (μ)	10 ⁻⁶	0.000001
nano (n)	10 ⁻⁹	0.000000001
pico (p)	10 ⁻¹²	0.00000000001

7. Acid–base indicators

Name	pH range	Colour change from lower pH to higher pH in range
thymol blue (1st change)	1.2–2.8	$red \rightarrow yellow$
methyl orange	3.1-4.4	$red \rightarrow yellow$
bromophenol blue	3.0-4.6	yellow \rightarrow blue
methyl red	4.4-6.2	$red \rightarrow yellow$
bromothymol blue	6.0–7.6	yellow \rightarrow blue
phenol red	6.8-8.4	yellow \rightarrow red
thymol blue (2nd change)	8.0–9.6	yellow \rightarrow blue
phenolphthalein	8.3–10.0	$colourless \rightarrow pink$

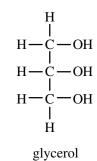
8. Representations of organic molecules

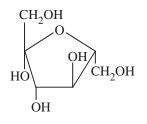

The following table shows different representations of organic molecules, using butanoic acid as an example.

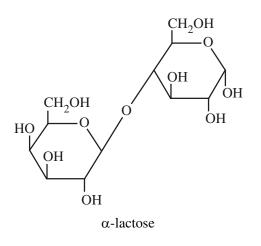

Formula	Representation
molecular formula	C ₄ H ₈ O ₂
structural formula	$H = \begin{bmatrix} H & H & H \\ I & I & I \\ C & C & C & C \\ I & I & I \\ H & H & H \end{bmatrix} = \begin{bmatrix} O \\ H \end{bmatrix}$
semi-structural (condensed) formula	CH ₃ CH ₂ CH ₂ COOH or CH ₃ (CH ₂) ₂ COOH
skeletal structure	о н

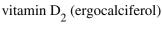
9. Formulas of some fatty acids

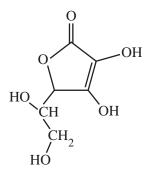
Name	Formula	Semi-structural formula
lauric	C ₁₁ H ₂₃ COOH	CH ₃ (CH ₂) ₁₀ COOH
myristic	C ₁₃ H ₂₇ COOH	CH ₃ (CH ₂) ₁₂ COOH
palmitic	C ₁₅ H ₃₁ COOH	CH ₃ (CH ₂) ₁₄ COOH
palmitoleic	C ₁₅ H ₂₉ COOH	CH ₃ (CH ₂) ₄ CH ₂ CH=CHCH ₂ (CH ₂) ₅ CH ₂ COOH
stearic	C ₁₇ H ₃₅ COOH	CH ₃ (CH ₂) ₁₆ COOH
oleic	C ₁₇ H ₃₃ COOH	CH ₃ (CH ₂) ₇ CH=CH(CH ₂) ₇ COOH
linoleic	C ₁₇ H ₃₁ COOH	CH ₃ (CH ₂) ₄ (CH=CHCH ₂) ₂ (CH ₂) ₆ COOH
linolenic	C ₁₇ H ₂₉ COOH	CH ₃ CH ₂ (CH=CHCH ₂) ₃ (CH ₂) ₆ COOH
arachidic	C ₁₉ H ₃₉ COOH	CH ₃ (CH ₂) ₁₇ CH ₂ COOH
arachidonic	C ₁₉ H ₃₁ COOH	CH ₃ (CH ₂) ₄ (CH=CHCH ₂) ₃ CH=CH(CH ₂) ₃ COOH

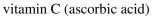

10. Formulas of some biomolecules

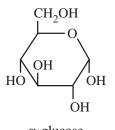


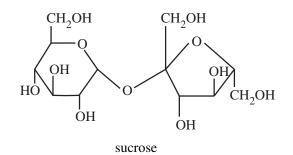

vitamin D₃ (cholecalciferol)

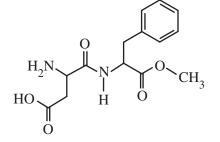

HO



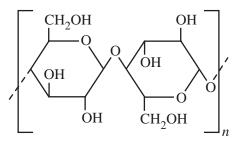


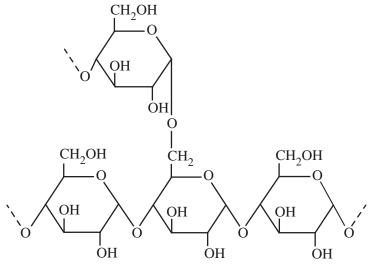


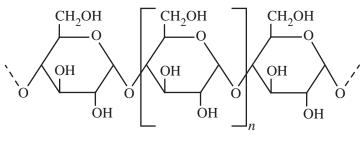




 α -glucose




ChemU34_DS_2023


aspartame

cellulose

amylopectin (starch)

amylose (starch)

11. Heats of combustion of common fuels

The heats of combustion in the following table are calculated at SLC (25°C and 100 kPa) with combustion products being CO₂ and H₂O. Heat of combustion may be defined as the heat energy released when a specified amount of a substance burns completely in oxygen and is, therefore, reported as a positive value, indicating a magnitude. Enthalpy of combustion, ΔH , for the substances in this table would be reported as negative values, indicating the exothermic nature of the combustion reaction.

Fuel	Formula	State	Heat of combustion (kJ g ⁻¹)	Molar heat of combustion (kJ mol ⁻¹)
hydrogen	H ₂	gas	141	282
methane	CH ₄	gas	55.6	890
ethane	C ₂ H ₆	gas	51.9	1560
propane	C ₃ H ₈	gas	50.5	2220
butane	C_4H_{10}	gas	49.7	2880
octane	C ₈ H ₁₈	liquid	47.9	5460
ethyne (acetylene)	C ₂ H ₂	gas	49.9	1300
methanol	CH ₃ OH	liquid	22.7	726
ethanol	C ₂ H ₅ OH	liquid	29.6	1360

12. Heats of combustion of common blended fuels

Blended fuels are mixtures of compounds with different mixture ratios and, hence, determination of a generic molar enthalpy of combustion is not realistic. The values provided in the following table are typical values for heats of combustion at SLC (25° C and 100 kPa) with combustion products being CO₂ and H₂O. Values for heats of combustion will vary depending on the source and composition of the fuel.

Fuel	State	Heat of combustion (kJ g ⁻¹)
kerosene	liquid	46.2
diesel	liquid	45.0
natural gas	gas	54.0

13. Energy content of food groups

Food	Heat of combustion $(kJ g^{-1})$
fats and oils	37
protein	17
carbohydrate	16

Bond	Wave number (cm ⁻¹)	Bond	Wave number (cm ⁻¹)
C-Cl (chloroalkanes)	600-800	C=O (ketones)	1680–1850
C–O (alcohols, esters, ethers)	1050-1410	C=O (esters)	1720–1840
C=C (alkenes)	1620–1680	C–H (alkanes, alkenes, arenes)	2850-3090
C=O (amides)	1630–1680	O-H (acids)	2500-3500
C=O (aldehydes)	1660–1745	O–H (alcohols)	3200-3600
C=O (acids)	1680–1740	N–H (amines and amides)	3300-3500

14. Characteristic ranges for infra-red absorption

15. ¹³C NMR data

Typical ${}^{13}C$ shift values relative to TMS = 0

These can differ slightly in different solvents.

Type of carbon	Chemical shift (ppm)
R-CH ₃	8–25
R-CH ₂ -R	20-45
R ₃ -CH	40-60
R ₄ -C	36–45
R-CH ₂ -X	15-80
R ₃ C–NH ₂ , R ₃ C–NR	35–70
R-CH ₂ -OH	50–90
RC=CR	75–95
R ₂ C=CR ₂	110–150
RCOOH	160–185
$R_{RO} > C = 0$	165–175
$R_{H} > C = O$	190–200
R ₂ C=O	205–220

16. ¹H NMR data

Typical proton shift values relative to TMS = 0

These can differ slightly in different solvents. The shift refers to the proton environment that is indicated in bold letters in the formula.

Type of proton	Chemical shift (ppm)
R-CH ₃	0.9–1.0
R-CH ₂ -R	1.3–1.4
RCH=CH–CH ₃	1.6–1.9
R ₃ -CH	1.5
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	2.0
$\begin{bmatrix} \mathbf{R} & \mathbf{C} & \mathbf{H}_3 \\ \mathbf{H} & \mathbf{O} \end{bmatrix}$	2.1–2.7
$R-CH_2-X (X = F, Cl, Br \text{ or } I)$	3.0-4.5
R–С H ₂ –ОН, R ₂ –С H –ОН	3.3–4.5
R-C ^{//O} NHCH ₂ R	3.2
$R-O-CH_3$ or $R-O-CH_2R$	3.3–3.7
$\bigcirc \bigcirc $	2.3
R-C OCH ₂ R	3.7–4.8
R–O–H	1–6 (varies considerably under different conditions)
R–NH ₂	1–5
RHC=CHR	4.5–7.0
ОН	4.0–12.0

Type of proton	Chemical shift (ppm)
—Н	6.9–9.0
R-C ⁰ NHCH ₂ R	8.1
R-C ^{PO} _H	9.4–10.0
R-CO-H	9.0–13.0

17. 2-amino acids (α -amino acids)

The table below provides simplified structures to enable the drawing of zwitterions, the identification of products of protein hydrolysis and the drawing of structures involving condensation polymerisation of amino acid monomers.

Name	Symbol	Structure
alanine	Ala	СH ₃ H ₂ N—CH—COOH
arginine	Arg	$\begin{array}{c} & \overset{\text{NH}}{\underset{l}{\overset{\parallel}{\underset{l}{\underset{l}{\underset{l}{\underset{l}{\underset{l}{\underset{l}{\underset{l}{\underset$
asparagine	Asn	$ \begin{array}{c} O \\ II \\ CH_2 - C - NH_2 \\ H_2N - CH - COOH \end{array} $
aspartic acid	Asp	$\begin{array}{c} CH_2 - COOH \\ I \\ H_2N - CH - COOH \end{array}$
cysteine	Cys	$H_2N - CH_2 - SH$ $H_2N - CH - COOH$
glutamic acid	Glu	$H_2 N - CH_2 - COOH$ $H_2 N - CH - COOH$
glutamine	Gln	$\begin{array}{c} & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ H_2N - CH - COOH \end{array}$
glycine	Gly	H ₂ N — CH ₂ — COOH
histidine	His	$\begin{array}{c} & ^{\text{CH}_2} & ^{\text{N}} \\ & \downarrow \\ H_2\text{N} - \text{CH}_2 - \text{COOH} \end{array}$
isoleucine	Ile	$\begin{array}{c} CH_3 - CH - CH_2 - CH_3 \\ I \\ H_2N - CH - COOH \end{array}$

Name	Symbol	Structure
leucine	Leu	$CH_{3} - CH - CH_{3}$ CH_{2} $H_{2}N - CH - COOH$
lysine	Lys	$\begin{array}{c} CH_2 - CH_2 - CH_2 - CH_2 - NH_2 \\ I \\ H_2N - CH - COOH \end{array}$
methionine	Met	$\begin{array}{c} CH_2 - CH_2 - S - CH_3 \\ I \\ H_2N - CH - COOH \end{array}$
phenylalanine	Phe	$H_2 \rightarrow H_2 $
proline	Pro	HN COOH
serine	Ser	$ \begin{array}{c} CH_2 - OH \\ I \\ H_2N - CH - COOH \end{array} $
threonine	Thr	СH ₃ —СН—ОН H ₂ N—СН—СООН
tryptophan	Trp	HN CH ₂ H ₂ N-CH-COOH
tyrosine	Tyr	H_2N – CH – COOH
valine	Val	$CH_{3} - CH - CH_{3}$ $ $ $H_{2}N - CH - COOH$

END OF DATA BOOKLET