aced

Units 3&4 Chemistry Trial Exam 2024 (Trial 2) – Assessment Guide

Section A

VCAA Key Knowledge

Question

Answer Guide

the definition of a fuel, including the distinction between fossil fuels (coal, natural gas, petrol) and biofuels (biogas, bioethanol, biodiesel) with reference to their renewability (ability of a resource to be replaced by natural processes within a relatively short period of time)	 Question 1 Biofuels A. do not require energy to produce. B. can be found trapped between rocks in gas reservoirs. C. are unable to be replenished at a rate faster than they are consumed. D. release carbon dioxide into the atmosphere during combustion. 	D	Biofuels, like fossil fuels, do release CO ₂ into the atmosphere during combustion. Biofuels like ethanol and biodiesel require energy to be produced from plant and animal matter and are not found in underground gas reservoirs. Biofuels are a renewable resource and are generally produced faster than they are consumed.
fuel sources for the body measured in kJ g ⁻¹ : carbohydrates, proteins and lipids (fats and oils)	 Question 2 The energy released when food undergoes combustion in a lab is often higher than the energy it provides to the body after digestion. This could be due to A. high levels of fat in the food sample. B. incomplete digestion of food molecules. C. the high degree of oxidation of carbohydrate molecules. D. the loss of heat energy to the surroundings during combustion. 	В	Laboratory analysis assumes that the fuel undergoes complete combustion. In reality, food is not completely digested and therefore the theoretical energy content is often higher than the energy available to the body.

Use the following information to answer Questions 3 and 4.

The energy profile diagram for a particular chemical process is shown below.

	Neaction progress		
comparison of exothermic and endothermic reactions, with reference to bond making and bond breaking, including enthalpy changes (ΔH) measured in kJ, molar enthalpy changes measured in	Question 3 Looking at the energy profile diagram, the forward reaction is A. endothermic because $E_a < H_r$ B. exothermic because $H_r > H_p$ C. exothermic because $\Delta H > E_a$ D. endothermic because $H_r < H_p$	В	The energy profile diagram shows that H_r is higher than H_p , therefore excess energy is released in an exothermic reaction.
changes for mixtures measured in kJ g ⁻¹ , and their representations in energy profile diagrams			
comparison of	Question 4	<u> </u>	Steam referming of

companison oj	Que	estion 4	L	Steam reforming of
endothermic	This	process does not represent the energy changes associated		methane to produce
reactions, with	witl	n		hydrogen gas requires the
reference to bond	Α.	fermentation of glucose.		input of energy, consistent
breaking, including	В.	cellular respiration.		with the definition of an
enthalpy changes (AH) measured in kI	C.	steam reforming of methane.		endothermic process. All
molar enthalpy	D.	a combustion reaction.		other reaction types release
changes measured in	ed in			energy, matching the
changes for mixtures	or+ and entnaipy iges for mixtures			energy profile diagram.
measured in kJ g ⁻¹ ,				
and their representations				
in energy profile				
diagrams				

combustion (complete	Qu	estion 5	D	15.60 x 1000 /17.5
reactions of fuels as	17.	5 mol of an unknown fuel undergoes complete combustion,		= 891 kJ mol ⁻¹
exothermic reactions:	rele	easing 15.60 MJ of energy. What is the likely identity of the		This is consistent with the
the writing of balanced	fue	l?		Data Book value for
thermochemical	Α.	hydrogen		methane.
equations, including states, for the	В.	ethane		
complete and	C.	methanol		
incomplete combustion	D.	methane		
of organic molecules				
using experimental data and data tables				

the use and limitations of the electrochemical series in designing galvanic cells and as a tool for predicting the products of redox reactions, for deducing overall equations from redox half-equations and for determining maximum cell voltage under	 Question 6 A spontaneous redox reaction occurs when solid zinc is placed in a beaker containing a 1.0 M solution of copper(II) ions at 25°C. Which of the following would NOT occur in the beaker? A. the temperature of the solution would increase B. a dark solid would be deposited at the surface of the zinc electrode C. a potential difference of approximately 1.10 V would be recorded D. the blue colour of the solution would gradually fade as 	С	Given that solid zinc is coming into direct contact with copper ions in solution, the energy released would be thermal, not electrical. The temperature would increase, solid copper would be produced and the blue colour would fade as
standard conditions	Cu ²⁺ (aq) ions are reduced		copper ions are reduced. No voltage would be generated due to the direct contact of reactants.
oxidation of glucose as the primary carbohydrate energy source, including the balanced equation for cellular respiration: $C_6H_{12}O_6(aq) + 6O_2(g)$ $\rightarrow 6CO_2(g) + 6H_2O(l)$	 Question 7 Which of the following statements about cellular respiration is incorrect? A. cellular respiration provides energy for body processes B. glucose is oxidised during cellular respiration C. cellular respiration occurs in both plant and animal cells D. the products of cellular respiration are usually glucose and oxygen gas 	D	The products of cellular respiration are CO ₂ and H ₂ O. All other statements are consistent with the process of cellular respiration.
production of bioethanol by the fermentation of glucose, $C_6H_{12}O_6(aq)$ $\rightarrow 2C_2H_5OH(l) +$ $2CO_2(g)$, and subsequent distillation to produce a more sustainable transport fuel	 Question 8 Which flow chart shows a likely processing pathway for the production of bioethanol for use in E10 petrol? A. glucose → fermentation → distillation → bioethanol B. canola oil → fermentation → distillation → bioethanol C. leaf litter → pre-treatment → distillation → fermentation → bioethanol D. sugar cane → pre-treatment → distillation → fermentation → fermentation → bioethanol 	A	Raw material should be high in carbohydrate. The more complex the carbohydrate, the more pre-treatment required. Glucose does not require pre-treatment as it is the precursor for fermentation to ethanol. Distillation follows fermentation to purify the final product.
applications and principles of laboratory analysis techniques in verifying components and purity of consumer products, including melting point determination and distillation (simple and fractional)	 Question 9 Analysis of an unidentified organic substance shows that it has a low melting point range. This information suggests that the substance A. has high purity. B. starts to melt at a low temperature. C. does not contain carbon-carbon double bonds. D. has a disorganised arrangement of molecules. 	A	A pure substance has a narrower melting point range than a mixture. A low melting point range is an indication of high purity.

the writing of	Question 10			The balanced half equation
balanced half- eauations (includina	The	e balanced half equation for the reduction of		in acidic conditions is
states) for oxidation	per	manganate(VII) ions to manganese(II) ions in alkaline		MnO4 ⁻ (aq) + 8H ⁺ (aq) + 5e ⁻
and reduction	cor	nditions is		\rightarrow Mn ²⁺ (aq) + 4H ₂ O(I)
overall redox cell	Α.	$MnO_4^{-}(aq) + 8OH^{-}(aq) + 5e^{-} \rightarrow Mn^{2+}(aq) + 4H_2O(I)$		Add enough OH ⁻ ions to
reaction in both acidic and basic conditions	В.	$MnO_4^{-}(aq) + 8H_2O(I) + 5e^{-} \rightarrow Mn^{2+}(aq) + 4OH^{-}(aq)$		each side to balance the $H^{\scriptscriptstyle +}$
	C.	$MnO_4^{-}(aq) + 4H_2O(I) + 5e^{-} \rightarrow Mn^{2+}(aq) + 8OH^{-}(aq)$		ions, leaving 80H $^{\scriptscriptstyle au}$ on the
conditions	D.	$MnO_4^{-}(aq) + 4H_2O(I) + 8H^{+}(aq) \rightarrow Mn^{2+}(aq) + 8OH^{-}(aq)$		right of the equation.
				Then cancel out the water
				molecules, leaving 4 on the
				left of the equation.
-				

the use and limitations of the electrochemical series in designing galvanic cells and as a tool for predicting the products of redox reactions, for deducing overall equations from redox half-equations and for determining maximum cell voltage under standard conditions

Question 11

A student constructs a series of galvanic cells as part of an investigation. Which combination of half cells would be expected to produce the greatest potential difference under standard conditions?

	Half-	cell 1	Half-cell 2		
	Electrode	Electrolyte	Electrode	Electrolyte	
Α.	Fe(s)	Fe ²⁺ (aq)	Pt(s)	Pb ²⁺ (aq)	
В.	Zn(s)	Zn ²⁺ (aq)	Ni(s)	Ni ²⁺ (aq)	
C.	۸g(s)	$\Lambda \sigma^{+}(2\sigma)$	inert	$Ma^{2+}(aa)$	
	AB(3)	Ag (ay)	electrode	ivig (aq)	
D.	inert	Mn ²⁺ (ad)	$\Delta (s)$	Δl ³⁺ (aq)	
	electrode	iviii (aq)	Ai(3)	Ai (ay)	

Mn²⁺/Al/Al³⁺ cell Water is the strongest oxidant so -0.83 - - 1.66 = 0.83V

D

Fe/Fe²⁺/Pb²⁺ cell -0.13 - -0.44 = 0.31VZn/Zn²⁺/Ni/Ni²⁺cell -0.25 - -0.76 = 0.51VAg/Ag⁺/Mg²⁺ cell no reaction (nonspontaneous)

calculations related to the application of stoichiometry to reactions involving the combustion of fuels, including mass-mass, mass- volume and volume- volume stoichiometry, to determine heat energy released, reactant and product amounts	Question 12 Consider the thermochemical equation for the complete combustion of propane at SLC below: $C_3H_8(g) + 5O_2(g) \rightarrow 3CO_2(g) + 4H_2O(I) \Delta H = -2220 \text{ kJ}$ Determine the theoretical ΔH value for the following reaction under the same conditions: $6CO_2(g) + 8H_2O(I) \rightarrow 2C_3H_8(g) + 10O_2(g)$ A. $\Delta H = +1110 \text{ kJ}$ B. $\Delta H = +4440 \text{ kJ}$ C. $\Delta H = -1110 \text{ kJ}$	В	The equation is reversed and doubled. Therefore, the reaction changes from exothermic to endothermic, with the amount of energy doubled.
	D. $\Delta H = -4440 \text{ kJ}$		
enthalpy changes	Question 13	В	Only pure substances can

enthalpy changes	Question 13			Only pure substances can
(ДН) measurea in кJ, molar enthalpy	For	which one of the following substances can energy content		have energy content
changes measured	be	expressed using both kJ g ⁻¹ and kJ mol ⁻¹ ?		expressed in kJ mol ⁻¹ . The
in kJ mol ⁻¹ and	Α.	biogas		only pure substance in the
mixtures measured	В.	palmitic acid		list is palmitic acid. The
in kJ g ⁻¹ ,	C.	E10 petrol		others are all mixtures.
	D.	sugar cane		

the role of	Que	estion 14	С	Renewable resources are
innovation in designing cells to	Αh	ydrogen production facility at Bell Bay, Tasmania, is aiming		replenished within a short
meet society's	to k	be one of the world's largest producers of renewable		time frame. Hydrogen
energy needs in	hvd	lrogen. The hydrogen will be used in fuel cell technology.		produced using hydro and
terms of producing	, dra	stically reducing carbon emissions in the transport industry.		wind power, rather than
(including equations				fossil fuel energy means
(including equations in acidic conditions) using the following methods: polymer electrolyte membrane electrolysis powered by either photovoltaic (solar) or wind energy artificial photosynthesis using a water oxidation	Acc feed hyd con A. B.	ording to green chemistry principles, raw materials and dstocks should be renewable, rather than depleting. The lrogen that will be produced at the Tasmanian facility is sidered renewable because a hydrogen fuel cell does not produce carbon emissions. porous electrodes will allow for increased energy efficiency. the energy source for hydrogen production will be		fossil fuel energy, means that it can be replenished at a rate faster than it is consumed and does not deplete natural resources. The other responses are incorrect (D) or do not link to the concept of renewability (A and B).
and proton		hydroelectric and wind-based power.		
reduction catalyst	D.	electrolysis of water to produce hydrogen does not		
system		require the input of energy.		

factors affecting the
frequency and
success of reactant
particle collisions
and the rate of a
chemical reaction in
open and closed
systems, including
temperature,
surface area,
concentration, gas
pressures, presence
of a catalyst,
activation energy
and orientation

Question 15

According to collision theory, which of the following changes will not lead to an increase in the rate of reaction?

- A. increasing the particle size of solid reactants
- B. decreasing the volume of the vessel for gaseous systems
- C. lowering the activation energy of the reaction
- **D.** increasing the temperature of the system

Increasing particle size decreases the surface area available for particle collision and will decrease the rate of reaction. All other options increase the reaction rate.

Α

Question 16

the change in position of equilibrium that can occur when changes in temperature or species or volume (concentration or pressure) are applied to a system at equilibrium, and the representation of these changes using concentrationtime graphs

The concentration-time graph below shows that a change was made to a system in equilibrium at time, t.

The equation states that Δ H is less than zero, indicating an exothermic reaction. From time, t, the reverse reaction is favoured as hydrogen and nitrogen concentrations increase. Given there is no immediate change to any species at time, t, the change is an increase in temperature, which reduces the value of K.

С

D

Source: Le Chatelier Principle and Concentration Time Graph (chemistryguru.com.sg)

Which option correctly identifies the change that was made to the system at time, t, with the corresponding effect on the equilibrium constant?

- A. increase in volume of the vessel, decrease K
- B. increase in volume of the vessel, no change to K
- C. increase in temperature, decrease K
- D. increase in temperature, no change to K

molecular, structural **Question 17** *and semi-structural*

(condensed)

formulas and skeletal structures of alkanes (including cyclohexane), alkenes, benzene, haloalkanes, primary

amines, primary amides, alcohols

and tertiary),

(primary, secondary

aldehydes, ketones,

carboxylic acids and

non-branched esters

State the IUPAC systematic name of the organic molecule shown in the diagram below.

Carboxylic acid/butanoic acid

Number the carbon atoms from the end closest to the carbonyl group. The longest chain is 4 carbon atoms in length.

- **A.** 2-methylpropan-3-one
- B. 3-methylpropan-2-one
- C. 3,3-dimethylpropan-2-one
- D. 3-methylbutan-2-one

в.	Tand III only
C.	III and IV only

aldehydes, ketones,

carboxylic acids and non-branched esters **D.** II, III and IV only

characteristics of the	Qu	Question 19CDegree of unsaturation:					
carbon atom that contribute to the	Wh	ich straight chain, hydrocarbon molecule has a degree of		Maximum H possible,			
diversity of organic	uns	aturation equal to 2?		minus actual H present,			
compounds formed,	Α.	C_2H_6		divided by 2.			
with reference to valence electron	В.	C_3H_6		C_4H_6			
number, relative	C.	C_4H_6		10-6/2 = 2			
bond strength, relative stability of carbon bonds with other elements, degree of unsaturation, and the formation of ctructural icometric	D.	C ₅ H ₁₀					

the application of	Que	estion 20	С	$n(H_2) = V/Vm$
Faraday's Laws and	Water can be electrolysed to produce hydrogen gas in an			= 1.8/24.8
determine the	eleo	ctrolytic cell at a rate of 1.8 litres per minute at SLC.		= 0.0726 mol H ₂
quantity of	Cal	culate the current required to produce this volume of		n(e⁻) = 0.0726 x 2
electrolytic reactant	hvdrogen gas.			= 0.145 mol e ⁻
current or time	Á.	58 A		$n(e^{-}) = Q/F$
required to either	В.	117 A		Q = 0.145 x 96500
use a particular auantity of reactant	C	233 Δ		= 14,008 C
or produce	С. D	840 Δ		Q = It
a particular quantity	υ.	0-07		l = 14.008/60
of product				= 233 A

recharge process.

Use the following information to answer Questions 22 and 23. The equation below represents the production of a common biofuel via transesterification of plant triglycerides.

R 1, R 2, R 3 = Hydrocarbon chain of 15 to 21 carbon atoms

Source: Adapted from https://commons.wikimedia.org/wiki/File:Transesterification_reaction.png

organic reactions and pathways, including equations, reactants, products,	Que Wh equ	estion 22 at is the identity of the reactant that is missing from the nation?	В	The reaction shows transesterification to produce biodiesel. An
reaction conditions and catalysts (specific enzymes not required): the esterification between an alcohol and a carboxylic acid transesterification of plant triglycerides using alcohols to produce biodiesel	equation? A. $C_3H_8O_3$ B. CH_3OH C. C_2H_5OH D. fatty acids			alcohol is required for the process. Given the structure of the products (one methyl group on the end of each methyl ester), the reactant must be methanol.

organic reactions and pathways, including equations, reactants, products, reaction conditions and catalysts (specific enzymes not required): the esterification between an alcohol and a carboxylic acid transesterification of plant triglycerides using alcohols to produce biodiesel	 Question 23 The methyl esters that are produced during this reaction A. are non-renewable. B. can be added to petrol to make E10 fuel. C. are commonly used as a biofuel in the transport industry. D. do not produce carbon dioxide emissions during combustion. 	С	This process is used to produce biodiesel, a biofuel that can replace diesel fuel, commonly used in the transport industry. Biofuels are renewable sources of energy. Ethanol, not biodiesel, is added to petrol to make E10 petrol. The fuel is high in carbon so would release CO ₂ upon combustion.
identification of bond types by qualitative infrared spectroscopy (IR) data analysis using characteristic absorption bands	Sind for the second		The bonds present in the molecule are likely to be 3358 cm ⁻¹ which could indicate N-H amine/amide or O-H acids/alcohols. The absence of a C=O bond at 1700cm ⁻¹ and no amine present in the answer options means the molecule is ethanol.

The likely identity of the molecule is

- A. ethanol
- B. ethanal
- C. ethanoic acid
- D. ethanamide

redox reactions as	Question 25					
simultaneous oxidation and	Wh	at is the correct oxidation number for chromium in $Cr_2O_7^{2-}$?		2Cr = +12		
reduction processes,	Α.	+6		<i>Cr</i> = +6		
and the use of oxidation numbers	В.	+7				
to identify the	C.	+12				
reducing agent, oxidising agent and conjugate redox pairs	D.	+14				

structural Question 26 С *Low-resolution* ¹*H*-*NMR can* determination of provide information about Low-resolution ¹H-NMR analysis can provide information about organic compounds the ratio of hydrogen the by low and high resolution proton atoms through comparison presence of carbon-13 isotopes in a molecule. Α. nuclear magnetic of peak area (integration). number of unique carbon environments in a molecule. Β. resonance (¹H-NMR) spectral analysis, Low resolution does not C. ratio of hydrogen atoms in each hydrogen environment. using chemical shift show signal splitting so number of neighbouring hydrogen atoms adjacent to each D. values, integration cannot provide information and peak splitting hydrogen environment. patterns (excluding about neighbouring H coupling constants), atoms. and application of the n+1 rule to deduce the number and nature of different proton environments identification of the Question 27 В Only 6 hydrogen structure and environments are observed. functional groups of

The hydrogen atoms on the

equivalent and produce one

The molecule is an acid (COOH group) so would be

a phenolphthalein

indicator.

full.png

colourless when tested with

Source: https://commons.wikimedia.org/wiki/File:Aspirin-in

methyl group are

signal.

The skeletal formula of an aspirin molecule is shown below.

Which of the following would NOT be observed when conducting laboratory and instrumental analysis of aspirin?

A. a mass spectrum peak at m/z 15

organic molecules that are medicines

- a ¹H-NMR spectrum with 8 clear signals Β.
- C. an IR spectrum showing a broad absorption band at approximately 3000cm⁻¹
- it is colourless in the presence of phenolphthalein D. indicator

ACED Units 3&4 Chemistry Trial Exam (Trial 2) – Assessment Guide © ACED 2024. This exam is only licenced to the purchasing school. Page 10 of 36

the role of	Question 28	В	Hydrogen ions gain
innovation in designing cells to	Consider the following statements regarding the production of		electrons and are reduced
meet society's	green hydrogen via electrolysis of water in acidic conditions.		to H_2 during cell operation.
energy needs in	I The reaction occurring at the negative electrode is		During electrolysis,
terms of producing 'areen' hydrogen	$2H_2O(I) \rightarrow O_2(g) + 4H^+(aq) + 4e^-$		oxidation occurs at the
(including equations	II Hydrogen ions are reduced to H ₂ (g) during electrolysis		positive electrode, not
in acidic conditions)	III The process produces green hydrogen when the		negative. Electrical energy
methods:	electrical energy required is obtained from renewable sources		is required to drive the non-
polymer electrolyte	IV Electrical energy is not required for this process, so the		spontaneous reactions
membrane electrolysis nowered	hydrogen is classified as a green fuel		involved in the electrolysis
by either			of water. If this energy is
photovoltaic (solar)	Which of the statements above are correct?		derived from renewable
artificial	A. I and IV only		resources, the hydrogen
photosynthesis using	B. II and III only		can be considered 'green'.
a water oxidation	C. I, II and IV only		
reduction catalyst	D. I, II and III only		
system	· · · · · · · · · · · · · · · · · · ·		
calculations	Question 29	Λ	$c(H_a)$ and $(I_a) = n/1/2$

culculations	Que	istion 29	Α	$C(H_2)$ and $(I_2) = n/V$	
involving equilibrium expressions	Hyd	rogen iodide is produced from a reversible reaction		= 1.0/2.0	
(including units) for	betv	veen hydrogen gas and iodine gas according to the		= 0.50 M	
a closed	equ	ation:		$K = [HI]^2 / [H_2] [I_2]$	
equilibrium system	H ₂ (g	i) + I₂(g) ⇒ 2HI(g)		$50 = [HI]^2 / 0.50 \times 0.50$	
and the dependence				$[HI]^2 = 50 \times 0.25$	
of the equilibrium constant (K) value	At a	particular temperature, 1.0 mol of H_2 and 1.0 mol of I_2 are		$[HI] = \sqrt{50 \ x \ 0.25}$	
on the system	pres	ent at equilibrium in a 2.0 L, closed vessel. If the		= 3.5 M	
temperature and the	equilibrium constant, K, is 50 at this temperature, the				
represent the	equilibrium concentration of hydrogen iodide would be closest				
reaction	to				
	Α.	3.5 M.			
	В.	3.5 no units.			
	C.	12.5 M.			
	D.	12.5 no units.			

ACED Units 3&4 Chemistry Trial Exam (Trial 2) – Assessment Guide © ACED 2024. This exam is only licenced to the purchasing school. Page 12 of 36

Section B

VCAA Key Knowledge

Answer Guide

The amount of energy absorbed or released during a reaction can be estimated using calorimetric processes in a laboratory. The table below shows two different methods for recording the change in temperature of water as a known mass of ethanol combusts.

A student designs an investigation to compare the two processes. The results, taken at SLC, are shown in the tables below.

Method 1: spirit burner results

Mass of ethanol combusted (g)	Mass of water in can (g)	ΔT water (°C)	Energy transferred to water (kJ)	ΔH_c ethanol (kJ g ⁻¹)
1.48	100	9.5		

Method 2: bomb calorimeter results

Mass of ethanol combusted (g)	Calorimeter calibration factor (kJ °C ⁻¹)	ΔT water (°C)	Energy transferred to water (kJ)	ΔH _c ethanol (kJ g ⁻¹)
10.6	5.60	58.5	328	30.9

characteristics of	Question 1a (1 mark)	Answer:
the selected	State the independent	• The method of calorimetry.
methodology and	variable in this	
method, and	investigation.	Marking Protocol:
appropriateness		One mark for the above point
of the use of independent.		
dependent and		
controlled		
selected scientific		
investigation		
the use of specific	Question 1b (2 marks)	Answer:
heat capacity of water to	Calculate the amount	• Energy = $m \times c \times \Delta T$
approximate the	of energy, in kJ, that	= 100 x 4.18 x 9.5
quantity of heat	was transferred to the	= 3971 J
energy released during the	water using the spirit	• = 4.0 kJ (answer in kJ, correct to two significant figures)
combustion of a	burner method. Record	
known mass of	your answer in the	Marking Protocol:
fuel and food	results table.	One mark for each of the above points. Significant figures must be correct
		for the mark.
the use of specific	Question 1c (1 mark)	Answer:
heat capacity of	Calculate the ΔH_c of	• $\Lambda H_c = Energy released / mass of fuel$
water to approximate the	ethanol. in kJ g ⁻¹ . using	= 4.0 / 1.48
quantity of heat	results from the spirit	$= 2.7 k l a^{-1}$
energy released	burner method Record	2.7.13.9
combustion of a	your answer in the	Marking Protocol
known mass of	results table	One mark for the above point
fuel and food		Note: Award consequential marks if the answer to Question 1h is
		incorrect but the calculation here is correct
L		
the accuracy,	Question 1d (3 marks)	Answer:
precision,	Calculate the	• From the Data Book, ethanol's molar enthalow is $-1370 \text{ k} \text{ mol}^{-1}$
repeatability,	theoretical heat of	$M(ethanol) = (12.0 \times 2) + (1.0 \times 6) + 16.0 = 46.0 \text{ a mol}^{-1}$
resolution and	combustion for ethanol	Heat of combustion (ethanol) = $1370/46.0$
validity of	in kl g^{-1} Compare the	$= 29.8 k l a^{-1}$
measurements	results of the two	• Spirit human results are cignificantly lower than theoretical 20.9 kJ \sim^{1}
	methods with the	• Spine burner results are higher than theoretical 20.8 kJ g
	calculated theoretical	- calorimeter results are myner than theoretical 29.8 KJ g $^-$
	value.	Marking Protocol:
		One mark for each of the above points
		Note: Check for consequential marks based on student calculations
		Note. Check for consequential marks based on student calculations.

assumptions and	Question 1e (2 marks)	Answer:
limitations of	A bomb calorimeter is	• Spirit burner – Possible Errors
methodology	similar to a solution	- Heat loss to the environment due to no lid on the metal can / metal can
and/or data	calorimeter as they	absorbs some of the heat / a flame not being centred under the can.
generation and/or analysis	both insulate against	OR
methods	heat loss. Both types of	- Incomplete combustion of the fuel, producing CO and less energy than
	calorimeter measure	expected.
	the temperature	OR
	change of a known	- Experimental error leading to a lower change in temperature: more than
	mass of water in order	100g water in the can / lower mass of ethanol burnt than recorded.
	to determine energy	
	changes.	Note: Must be an error that leads to a value lower than 29.8 kJ g $^{ ext{-1}}$
		(however, award consequential marks for incorrect calculations leading
	Assuming that the	to a higher heat of combustion).
	calorimeter was	
	calibrated correctly,	Bomb Calorimeter – Possible Errors
	describe one source of	- A lower volume of water in calorimeter than for calibration / a higher
	error for each method	mass of ethanol combusted than recorded, resulting in a higher change in
	that could have	temperature.
	affected the accuracy	OR
	of results obtained by	- Not stirring the water as it heats, leading to uneven heating of water
	the student.	and recording of a higher final temperature.
		Note: Must be an error that leads to a value higher than 29.8 kJ g $^{ ext{-1}}$
		(however, award consequential marks for incorrect calculations leading to
		a lower heat of combustion).
		Marking Protocol.
		One mark for an error accepted with the critic hurner and one mark for

One mark for an error associated with the spirit burner and one mark for an error associated with the calorimeter.

Question 1f (1 mark)	Answer:
The thermometer used	 The low resolution does not allow for a fine distinction between
for the spirit burner	measurements. While repeat trials may look precise, the range of values
method was labelled as	may be large, and the student may not be able to determine if the
having a resolution of	results are precise (close together).
0.5°C. Explain how this	
could affect the	Marking Protocol:
student's ability to	One mark for the above point.
check for the precision	Note: The response must focus on precision, not accuracy (i.e. the
of data.	measurements being close to the true value).
	Question 1f (1 mark) The thermometer used for the spirit burner method was labelled as having a resolution of 0.5°C. Explain how this could affect the student's ability to check for the precision of data.

the principles of	Question 1g (3 marks)	Answer:
solution calorimetry.	Solution and bomb	 Calculation of energy supplied (including time conversion)
including	calorimeters are both	Energy Supplied = VIt
determination of	calibrated before use.	= 8.00 x 4.50 x (5 x 60)
calibration factor and consideration	The bomb calorimeter	= 10,800 J
of the effects of	was initially calibrated	
heat loss; analysis	using a known quantity	 Calculation of temperature change (including conversion of CF to J)
time graphs	of thermal energy	$\Delta T = V I t / C F$
obtained from	supplied by an electric	= 10,800/5600
solution	heater. A current of	= 1.92 °C
culoninetry	4.50 A was passed	
	through the heater for	• Highest temperature = 22.0 + 1.92
	5 minutes with a	$= 23.9^{\circ}$ C
	potential difference of	
	8.00 V. If the	Marking Protocol:
	temperature of the	One mark for each of the above points.
	water was 22.0°C	
	before calibration,	
	calculate the highest	
	temperature the water	
	reached during	
	calibration. Assume the	
	calorimeter is well	
	insulated.	

The diagram below shows the set-up of a hydrogen fuel cell.

Source: https://commons.wikimedia.org/wiki/File:Fuel_cell_EN.svg

the common design features and general operating principles of fuel cells	Question 2a (1 mark) The diagram shows a box with an arrow, pointing to one of the electrodes. Identify this electrode as either the anode or the cathode and write your answer in the box.	 Answer: Cathode Marking Protocol: One mark for the above point.
the writing of balanced half-	Question 2b (1 mark)	Answer:
equations	Write the equation for	• $H_2 \rightarrow 2H^+ + 2e^-$
(including states)	the half-cell reaction	
for oxidation and	occurring at the	Marking Protocol:
reactions	negative electrode in	One mark for the above point.
	the fuel cell.	Note: States are not required.
deducing overall	Question 2c (1 mark)	Answer:
equations from redox half-	The reactions occurring	• Acidic conditions: 1.23 – 0.00 = 1.23 V
equations and for	in the acidic fuel cell	
determining	were replicated in a lab	Marking Protocol:
maximum cell voltage under	at SLC. Predict the	One mark for the above point.
standard	potential difference of	
conditions	the replicated cell, in	
	volts.	
L		

the common design features and general operating principles of fuel cells	Question 2d (2 marks) Hydrogen fuel cells can also be constructed with an alkaline electrolyte, such as potassium hydroxide, KOH. State two differences between acidic and alkaline hydrogen fuel cells with reference to the reactions occurring	 Answer: OH⁻ ions are required at the anode for reaction with H₂ in an alkaline cell but not in an acidic cell. Water is a reactant at the cathode in an alkaline cell. It is a product at the cathode in an acidic cell. Hydrogen ions travel from anode to cathode through the electrolyte in an acidic cell. Hydroxide ions travel from cathode to anode in an alkaline cell. Marking Protocol: One mark for any of the above points, to a maximum of two.
	at the anode and cathode.	
the application of Faraday's Laws and stoichiometry to determine the quantity of galvanic or fuel cell reactant and product, and the current or time required to either use a particular quantity of reactant or produce a particular quantity of product	Question 2e (3 marks) To increase the electrical energy output of fuel cells, individual cells can be linked together, forming a stack. A particular stack of acidic hydrogen fuel cells can generate a current of 250 A. Calculate the mass of hydrogen gas that would be consumed by the fuel cell stack over a 5-hour period.	Answer: • $Q = It$ = 250 x (5 x 60 x 60) = 4500000 C n(e-) = 4500000/96500 n(e-) = 46.6 mol • $n(H_2) = 46.6/2$ = 23.3 mol H ₂ • mass H ₂ = 23.3 x 2.0 = 46.6 g Marking Protocol: One mark for each of the above points.
the common design features and general operating principles of fuel cells, including the use of porous electrodes for	Question 2f (2 marks) Fuel cell electrodes are both porous and conductive. Explain how these electrode properties improve the	Answer: • Electrodes are porous to increase available surface area for reactions, improving the efficiency of the cell / they are porous to allow for catalyst particles to be embedded in them, increasing the efficiency of reaction / they allow gaseous reactants to enter the cell to make contact with the electrolyte.

• Electrodes are conductive to allow for the flow of charge through the cell / to allow for the movement of electrons from anode to cathode.

Marking Protocol:

gaseous

reactants to

increase cell efficiency overall function of the

cell.

One mark for each of the above points. Note: The response must explain both properties for two marks. Sulfuric acid is a very useful chemical. It can be used as an electrolyte in batteries, as a cleaning agent, or as a precursor in the production of other chemicals. One of the key stages in the commercial production of sulfuric acid is the reaction of sulfur dioxide with oxygen in the air. The reaction is reversible and exothermic in the forward direction.

$2SO_2(g)$	$+ O_2(g)$	⇒ 2SO ₃ (g
2302(8)	1 02(8)	- 2003	ъ

oxidation and reduction processes, and the use of oxidation numbers to identify the reducing agent.	With the use of oxidation numbers, show that sulfur, in sulfur dioxide, undergoes oxidation during this process.	 S = +4 to +6. An increase in oxidation number indicates that oxidation has taken place. Marking Protocol: One mark for the above point.
oxidising agent and conjugate redox pairs		
the application of	Question 3h (1 mark)	Answer
Le Chatelier's	It is common for	• Every avagent as a reactant causes the reaction to favour the forward
principle to identify factors that favour the	oxygen to be mixed	direction, maximising yield.
yield of a	1.1 ratio during	Marking Protocol
chemical reaction	industrial	One mark for the above point
	manufacturing	
	processes. However.	
	the molar coefficients	
	suggest that only one	
	mole of oxygen is	
	required for every two	
	moles of sulfur dioxide.	
	Suggest a likely reason	
	for the 1:1 mixing ratio.	
responses to the		A
conflict between	Question 3C (2 marks)	Answer:
optimal rate and temperature	temperature for the	• The reaction is exothermic. Temperatures that are too high would favour the reverse reaction, decreasing yield.
considerations in	production of sulfur	• The rate of reaction would drop at temperatures that are too low due to
producing equilibrium	trioxide is 450°C. With	decreased average kinetic energy of particles/fewer collisions.
reaction	reference to yield and	
products,	rate of reaction,	Marking Protocol:
the distinction	explain the factors	One mark for each of the above points.
between reversible and	involved in this choice	
irreversible	of temperature.	
reactions, and between rate and		
extent of a reaction		

the role of catalysts in	Question 3d (1 mark)	Answer:
increasing the	A vanadium catalyst is	 A catalyst provides an alternative pathway with reduced activation
rate of specific	used for this reaction.	energy.
reactions, with	Explain how a catalyst	
reference to	increases the rate of	Marking Protocol:
reaction	reaction	One mark for the above point
pathways of		
lower activation		
energies		
recommended to the		
conflict between	Question 3e (2 marks)	Answer:
optimal rate and	Explain how the use of	 Improving energy efficiency requires processes to be designed to have
temperature	catalysts supports the	the same outcome, whilst using less energy, or eliminating energy
considerations in	green chemistry	waste.
equilibrium	principle of designing	 Catalysts increase the rate of reaction without increasing energy
reaction	processes for greater	demands so the same outcome can be achieved without increasing
products, with	energy efficiency.	temperature.
reference to the	0, ,	
principles of		Marking Protocol:
catalysis and		One mark for each of the above points
designing for		one mark for each of the above points.
energy ejjiciency		
the reaction	Ouestion 3f (3 marks)	Answer:
quotient (Q) as a	Analysis of the	
quantitative	Analysis of the	
measure of the	composition of reacting	$Q = [SO_3]^2 / [SO_2]^2 [O_2]$
chemical	gases shows that, at a	$= 2.95^2 / 1.20^2 \times 2.40$
reaction: that is,	particular point in time,	$= 2.52 M^{-1}$
the relative	the following molar	 K is greater than Q at the particular point in time.
products and	concentrations are	 Therefore, the rate of the forward reaction will be higher than the rate
reactants present	present at 450°C:	of the reverse reaction until equilibrium is established.
during a reaction	1.20 M SO ₂ (g)	
at a given point in	2.40 M O ₂ (g)	Marking Protocol:
ume	2.95 M SO₃(g)	One mark for each of the above points
	3.07	
	The equilibrium	
	constant, K, for the	
	reaction at the same	
	temperature is 2/ & M ⁻	
	1	
	Explain how the	
	reaction will proceed	
	from this point in time	
	with reference to the	
	with reference to the	
	reaction quotient (Q)	
	and the rate of both	
	forward and reverse	
	pathways.	

The diagram below shows the laboratory set-up of a simple galvanic cell.

Source: https://commons.wikimedia.org/wiki/File:CNX_Chem_17_02_Oxidareduc.png

the common	Question 4ai (1 mark)	Answer:
design features	Write the half equation	• Mg(s) \rightarrow Mg ²⁺ (aq) + 2e ⁻
oneratina	for the reaction	
principles of non- rechargeable	occurring at the anode.	Marking Protocol:
(primary)		One mark for the above point.
galvanic cells		Note: Correct states are required.
converting		
into electrical		
energy, including		
electrode		
polarities and the		
role of the		
and reactive) and		
electrolyte		
solutions		
the common	Question 4aii (1 mark)	Answer:
the common design features and general	Question 4aii (1 mark) State the identity of	Answer: • Hydrogen gas.
the common design features and general operating	Question 4aii (1 mark) State the identity of the gas bubbles	Answer: • Hydrogen gas.
the common design features and general operating principles of non-	Question 4aii (1 mark) State the identity of the gas bubbles forming in the half cell	Answer: • Hydrogen gas. Marking Protocol:
the common design features and general operating principles of non- rechargeable (primary)	Question 4aii (1 mark) State the identity of the gas bubbles forming in the half cell containing the	Answer: • Hydrogen gas. Marking Protocol: One mark for the above point.
the common design features and general operating principles of non- rechargeable (primary) galvanic cells	Question 4aii (1 mark) State the identity of the gas bubbles forming in the half cell containing the platinum wire.	Answer: • Hydrogen gas. Marking Protocol: One mark for the above point.
the common design features and general operating principles of non- rechargeable (primary) galvanic cells converting	Question 4aii (1 mark) State the identity of the gas bubbles forming in the half cell containing the platinum wire.	Answer: • Hydrogen gas. Marking Protocol: One mark for the above point.
the common design features and general operating principles of non- rechargeable (primary) galvanic cells converting chemical energy	Question 4aii (1 mark) State the identity of the gas bubbles forming in the half cell containing the platinum wire.	 Answer: Hydrogen gas. Marking Protocol: One mark for the above point.
the common design features and general operating principles of non- rechargeable (primary) galvanic cells converting chemical energy into electrical	Question 4aii (1 mark) State the identity of the gas bubbles forming in the half cell containing the platinum wire.	 Answer: Hydrogen gas. Marking Protocol: One mark for the above point.
the common design features and general operating principles of non- rechargeable (primary) galvanic cells converting chemical energy into electrical energy, including electrode	Question 4aii (1 mark) State the identity of the gas bubbles forming in the half cell containing the platinum wire.	 Answer: Hydrogen gas. Marking Protocol: One mark for the above point.
the common design features and general operating principles of non- rechargeable (primary) galvanic cells converting chemical energy into electrical energy, including electrode polarities and the	Question 4aii (1 mark) State the identity of the gas bubbles forming in the half cell containing the platinum wire.	 Answer: Hydrogen gas. Marking Protocol: One mark for the above point.
the common design features and general operating principles of non- rechargeable (primary) galvanic cells converting chemical energy into electrical energy, including electrode polarities and the role of the	Question 4aii (1 mark) State the identity of the gas bubbles forming in the half cell containing the platinum wire.	Answer: • Hydrogen gas. Marking Protocol: One mark for the above point.
the common design features and general operating principles of non- rechargeable (primary) galvanic cells converting chemical energy into electrical energy, including electrode polarities and the role of the electrodes (inert	Question 4aii (1 mark) State the identity of the gas bubbles forming in the half cell containing the platinum wire.	Answer: • Hydrogen gas. Marking Protocol: One mark for the above point.
the common design features and general operating principles of non- rechargeable (primary) galvanic cells converting chemical energy into electrical energy, including electrode polarities and the role of the electrodes (inert and reactive) and	Question 4aii (1 mark) State the identity of the gas bubbles forming in the half cell containing the platinum wire.	Answer: • Hydrogen gas. Marking Protocol: One mark for the above point.

solutions

the health, safety and ethical guidelines relevant to the selected scientific investigation	Question 4b (1 mark) State one safety hazard that would need to be controlled during the operation of this cell.	 Answer: Production of H₂ – H₂ is flammable. Magnesium is reactive in water, producing heat, causing burns. The acidic electrolyte at the cathode is corrosive. Electricity is generated and could cause injury. MgCl₂ is a skin and eye irritant.
		Marking Protocol: One mark for any of the above points. Note: The response must clearly state the hazard. For example, 'Production of H_2 ' is not enough for a mark.
the use and limitations of the electrochemical series in designing galvanic cells and as a tool for predicting the products of redox reactions,	Question 4c (3 marks) Explain the likely outcome of replacing the magnesium coil with an inert carbon electrode.	 Answer: The cell would stop functioning. There is no species present strong enough to cause the reduction of H⁺ ions at the cathode (no species present would react). Water is the strongest reductant present, therefore no reaction would occur. Marking Protocol: One mark for each of the above points. Note: Water must be identified for full marks.

The chemical equation below represents the process of photosynthesis in plant cells, where atmospheric carbon dioxide is converted into biomass.

 $6CO_2(g) + 6H_2O(I) \rightarrow C_6H_{12}O_6(aq) + 6O_2(g)$ ΔH = +2803 kJ

photosynthesis as	Question 5a (3 marks)	Answer:
the process that converts light	Calculate the amount	• $n(CO_2) = m/M$
energy into	of energy, in kJ,	= 10.0/44.0
chemical energy	required to convert	= 0.227 mol
of glucose and	10.0 g of atmospheric	• Energy required per mole of $CO_2 = 2803/6$
oxygen for	carbon dioxide into	= 467 kJ
respiration in livina thinas:	glucose.	• Energy = $n \times \Delta H$
6CO ₂ (g) + 6H ₂ O(l)		= 0.227 x 467
$\rightarrow C_6 H_{12} O_6(aq) +$		= 106 kJ
$\mathcal{O}_2(\mathcal{G})$		
		Marking Protocol:
		One mark for each of the above points.
condensation	Question 5b (1 mark)	Answer:
reactions to synthesise large	The glucose produced	 Condensation reaction (or condensation polymerisation).
biologically	during photosynthesis	
important molecules for	can be stored as starch	Marking Protocol:
storage as	in plant cells. State the	One mark for the above point.
proteins, starch,	type of reaction that	
glycogen and linids (fats and	occurs to form starch	
oils)	from glucose.	

ACED Units 3&4 Chemistry Trial Exam (Trial 2) – Assessment Guide © ACED 2024. This exam is only licenced to the purchasing school. Page 22 of 36

condensation reactions to synthesise large biologically important molecules for storage as	Question 5c (1 mark) Calculate the molar mass of a starch polymer consisting of 50 glucose monomers.	Answer: • Each bond formed involves the removal of water (18.0 g mol ⁻¹). 49 bonds form between 50 glucose molecules, so the molar mass will be $50 \times 180 - (49 \times 18.0)$ = 8.12 x 10 ³ g mol ⁻¹
proteins, starch, glycogen and lipids (fats and oils)	l he molar mass of glucose is 180.0 g mol ⁻ ¹ .	Marking Protocol: One mark for the above point.

Plants that contain a high percentage of starch and cellulose are used as biomass for the production of bioethanol. The equation for this reaction is shown below.

$C_6H_{12}O_6(aq) \rightarrow 2C_2H_5OH(I) + 2CO_2(g)$

calculations of	Question 5di (1 mark)	Answer:
percentage yield	Calculate the atom	 M(desired product) / M(all reactants) x100
economy of	economy of the	$= 92/180 \times 100$
single-step or	reaction to form	51 %
overall reaction	bioethanol from	
the advantages	glucose	Marking Protocol:
for society and	Bideose.	One mark for the above point
for industry of		
developing		
processes with a		
high atom		
economy		

calculations of	Question 5dii (1 mark)	Answer:
percentage yield	Explain whether the	 The atom economy for the production of ethanol is low, with almost
economy of	value calculated in	50% of the reactant atoms ending up as waste gas. It does not support
single-step or	Question 5di supports	the green chemistry principle for atom economy.
overall reaction pathways, and	the green chemistry	
the advantages	principle for atom	Marking Protocol:
for society and	economy.	One mark for the above point.
developing		Note: Award consequential marks if the answer to Question 5di is high
chemical		and the explanation is consistent with a high atom economy.
processes with a		
economy		
advantages for	Question 5e (1 mark)	Answer:
society and for industry of	State one reason why it	 High atom economy reactions minimise waste.
developing	is more sustainable for	 High atom economy reactions require fewer resources for the
chemical	industrial processes to	production of a particular chemical.
processes with a high atom	have a high atom	
economy	economy.	Marking Protocol:

One mark for either of the above points.

pathways for the synthesis of primary amines and carboxylic acids

Question 5f (2 marks)

Ethanol can also be used as a reactant in the commercial production of ethanoic acid. Complete the equation below, identifying the reagents required for the reaction and the structural formula of ethanoic acid. Write your responses into the boxes.

Answer:

- Reagents: $H^+(aq)/Cr_2O_7^{2-}(aq)$ or $H^+(aq)/MnO_4^{-}(aq)$
- Structural formula of ethanoic acid showing all bonds:

Source: https://commons.wikimedia.org/wiki/File:Essigs%C3%A4ure_-_Acetic_acid.svg

Marking Protocol:

One mark for each of the above points.

photosynthesis.

of natural

artificial

Compare the processes

photosynthesis and

photosynthesis.

the esterification	Question 5g (1 mark)	Answer:
alcohol and a	The process of	 Ethyl ethanoate skeletal formula:
carboxylic acid	esterification between	0
	an alcohol and a	0
	carboxylic acid	
	produces molecules	
	that can be used as	
	artificial flavours and	0
	scents. Draw the	Source: https://commons.wikimedia.org/wiki/File:Ethyl-acetate-2D-skeletal.svg
	skeletal formula of the	
	ester formed from the	Marking Protocol:
	reaction between	One mark for the above point.
	ethanol and ethanoic	
	acid.	
artificial photosynthesis using a water	Question 5h (2 marks)	Answer:
	Scientists are	Similarities:
oxidation and	developing methods of	 Both processes harness sunlight for chemical energy production.
proton reduction	fuel production	
cuturyst system	through artificial	Differences:

- Artificial photosynthesis is more efficient than natural photosynthesis.
- Natural photosynthesis produces food for plants/glucose, whereas artificial photosynthesis produces fuels like methane or hydrogen gas.

Marking Protocol:

One mark for any of the above points, to a maximum of two. Note: One similarity and one difference, as well as a comparison between both processes, is required for full marks. Enzymes are biological catalysts that speed up the rate of many important biological reactions.

The diagram below shows the folded structure of maltase, an enzyme that catalyses the breakdown of maltose into glucose during the hydrolysis of carbohydrates.

Source: File:Galactosidase enzyme 2.svg

enzymes as	Question 6a (1 mark)	Answer:
protein-basea catalvsts in livina	The coiled structures in	 Hydrogen bonds between peptide linkages.
systems: primary,	the folded enzyme	
secondary,	represent alpha	Marking Protocol:
tertiary and auaternary	helices. Describe the	One mark for the above point.
	bonding that occurs in	Note: The response must mention both hydrogen bonds AND peptide
	the enzyme to produce	links (or amide groups) for the mark.
	these coiled sections.	
enzymes as	Question 6b (2 marks)	Answer:
protein-based catalysts in livina	Explain why people	 A maltase deficiency results in an inability to break bonds/hydrolyse
systems	who suffer from	bonds between glucose molecules and would lead to a decrease in
	maltase deficiency are	available glucose for respiration.
oxidation of glucose as the	likely to experience a	 A decreased availability of glucose for respiration would result in less
primary	feeling of tiredness,	energy being available to the body to carry out daily functions.
carbohydrate	lack of energy and	
energy source	motivation.	Marking Protocol:
		One mark for each of the above points.

changes in enzyme function in terms of structure and bonding as a result of increased temperature (denaturation), decreased temperature (lowered activity), or changes in pH (formation of zwitterions and denaturation) preventina binding of the actual substrate

Question 6c (4 marks) Maltase has an optimum pH range of 6.5-7.5. The structural formula of glutamic acid, one of the amino acids found in maltase, is shown below.

Answer:

- In acidic conditions, the COOH group in the R side chain does not ionise.
- This will prevent or break ionic bonds in the tertiary structure.
- Incorrect folding leads to the loss of the required 3D shape of the molecule.
- The active site shape will be altered and not fit the substrate, slowing catalysis.

Marking Protocol:

One mark for each of the above points.

Source: File:Glutamic Acid.svg

Explain how the presence of glutamic acid in the peptide chain could affect the tertiary structure and function of the enzyme if the pH drops below the optimum range.

Question 6d (2 marks)

Tangzhiqing (TZQ) is a

Chinese herbal

medicine that is

treat high blood

glucose levels

sometimes used to

associated with Type II

diabetes. It works to

inhibit the action of enzymes, like maltase,

that break down carbohydrates. Explain the likely function of TZQ to inhibit the enzyme.

medicines that function as competitive enzyme inhibitors: organic molecules that bind through lock-and-key mechanism to an active site preventing binding of the actual substrate

Answer:

- TZQ binds to the active site of the enzyme as it has a similar shape.
- This inhibits substrate binding and subsequent hydrolysis of carbohydrates/disaccharides.

Marking Protocol:

One mark for each of the above points.

Terminalia ferdinandiana, or gubinge, is a native plum found in the Kimberley region of Western Australia. The fruit is known to be very high in Vitamin C (ascorbic acid). Laboratory analysis of the native fruit was conducted to compare its ascorbic acid content with that of an orange. Oranges have been found to contain approximately 53 mg of ascorbic acid per 100 g.

A redox titration was performed and a summary of the procedure is given below.

- A 20.0 g sample of gubinge was crushed and juiced, then filtered to remove solids.
- The juice was diluted to 250 mL in a volumetric flask.
- A 25.0 mL aliquot of the diluted juice was added to a conical flask with a few drops of HCl and 10 drops of starch indicator.
- The aliquot was titrated with a standardised solution of 0.050 M I_2 and the average titre was found to be 6.63 mL.

The chemical equation for the reaction is:

the writing of	Question 7a (1 mark)	Answer:
balanced half- eauations	The half equation for	• $C_6H_8O_6(aq) \rightarrow C_6H_6O_6(aq) + 2H^+(aq) + 2e^-$
(including states)	the reduction of iodine	
for oxidation and	during the analysis is	Marking Protocol:
reduction reactions, and the	$I_2(aq) + 2e^- \rightarrow + 2I^-(aq).$	One mark for the above point.
overall redox cell		Note: States are not required for the mark.
reaction in both	Write the half equation	
conditions	for the oxidation of	
	ascorbic acid to show	
	that the use of a redox	
	titration is justified.	
volumetric	Question 7b (1 mark)	Answer:
analysis, including	Calculate the amount	• $n(I_2) = cV$
calculations of	of I ₂ , in mol, required	= 0.05 x (6.63/1000)
excess and	to reach the end point	$= 3.32 \times 10^{-4} \text{ mol}$
limiting reactants using redox	of the reaction.	
titrations		Marking Protocol:
(excluding back titrations)		One mark for the above point.

volumetric	Question 7c (3 marks)	Answer:
analysis, including	Assuming all the	$\bullet n(C_6H_8O_6) = n(I_2)$
calculations of	ascorbic acid in the	$= 3.32 \times 10^4$ mol in 25.0 mL aliquot
excess and	fruit was present in the	
limiting reactants	diluted juice, use the	● n(C ₆ H ₈ O ₆) in 250 mL volumetric flask
titrations	balanced equation to	$= 3.32 \times 10^{-4} \times 10$ J = 3.32×10^{-3} mol
(excluding back	calculate the mass of	
titrations)	ascorbic acid, in mg,	• $m(C_cH_0O_c)$ in 250 mL volumetric flask/20a sample = n x M
	present in the 20.0 g	$= 3.32 \times 10^{-3}$ mol x 176.0 a mol ⁻¹
	sample of gubinge.	$= 0.583 \times 1000$
		= 583 ma in the 20.0 a sample
		- 505 mg in the 20.0 g sumple.
		Marking Protocol:
		One mark for each of the above points.
the key findings	Question 7d (2 marks)	Answer:
of the selected	Referring to the results	• Given that there is 583 mg of ascorbic acid in the 20.0 g sample of
scientific	of the analysis,	gubinge, there would be 2915 mg in 100 g.
investigation	compare the ascorbic	• This compares to only 53 mg in 100 g for oranges. There is a difference
	acid content of oranges	of 2862 mg, or 55 times more ascorbic acid, in gubinge than in oranges.
	and gubinge.	
		Marking Protocol:
		One mark for each of the above points.
		Note: Students must compare both fruits in the answer.
the accuracy,	Question 7e (2 marks)	Answer:
repeatability,	The investigation was	 The experiment is not reproducible as different fruit samples may
reproducibility,	reproduced by	contain different amounts of ascorbic acid.
resolution and	scientists in a different	 The ripeness of the fruit may have differed between the two groups.
measurements	laboratory. The	• The discarded pulp may contains different amounts of ascorbic acid.
	scientists followed the	
	method correctly,	Marking Protocol:
	under the same	One mark for any of the above points, to a maximum of two.
	conditions, however	
	their results were	
	much lower than those	
	achieved in the original	
	analysis. State two	
	possible reasons for	
	this difference.	

An unknown organic compound found in a sample of cat food is tested to determine its identity. A range of laboratory and instrumental analysis techniques are used to determine whether the organic compound could be harmful to cats if it is consumed.

Test 1: Laboratory analysis

Test	Result
Boiling point	102°C
Bromine test	Brown colour observed
Test for ester formation	No smell or odour was detected when the sample was heated with ethanoic acid and sulfuric acid
Test for acids	No reaction with Na ₂ CO ₃

qualitative tests	Question 8a (3 marks)	Answer:
for the presence of carbon-carbon	The laboratory tests	 A relatively high BP, suggesting a molecule that can form many
double bonds,	provide initial	dispersion forces.
hydroxyl and	information about the	 A relatively high BP, suggesting a polar functional group could be
functional groups	structure and	present.
junctional groups	properties of the unknown compound. Looking at the results of the laboratory experiments, state three inferences that can be made about the	 A BP of 102 °C means the compound is liquid at room temperature, with stronger intermolecular forces than water molecules. No reaction with bromine, so no C-C double bonds. Does not react with carboxylic acid to form an ester, so unlikely to be an alcohol. No reaction with a base, so unlikely to be a carboxylic acid.
	compound.	Marking Protocol:
		One mark for any of the above points, to a maximum of three.

Test 2: IR Spectroscopy

Infrared Spectrum

Source: 3-Pentanone (nist.gov)

identification of bond types by qualitative infrared spectroscopy (IR) data analysis using characteristic absorption bands	Question 8b (2 marks) Identify the bonds responsible for the two strongest	Answer: ● C-H bond at ~2850-3090 cm ⁻¹ ● C=O bond at ~1700 cm ⁻¹
	transmittance bands shown on the IR spectrum that are also consistent with the laboratory analysis results.	Marking Protocol: One mark for each of the above points.

Test 3: Mass Spectrometry

Mass Spectrum

applications of mass spectrometry (excluding features of instrumentation and operation) and interpretation of qualitative and quantitative data, including identification of molecular ion peak, determination of molecular mass and identification of simple fragments

Question 8c (1 mark) The mass spectrum

shows a base peak at

possible fragment that

could have produced

m/z 57. Identify a

this peak.

Answer:

• [C₃H₅O]+ or [C₄H₉]+

Marking Protocol:

One mark for the above point.

applications of mass spectrometry (excluding features of instrumentation	Question 8d (2 marks) State the two classes of compounds that match the laboratory test	Answer: • Ketone. • Aldehyde.
and operation) and interpretation of qualitative and quantitative data, including identification of molecular ion peak, determination of molecular mass and identification of simple fragments	results, the IR spectrum and mass spectrum of the unknown compound.	Marking Protocol: One mark for each of the above points.

Test 4: ¹³C NMR and low resolution ¹H NMR Spectroscopy

low resolution

Source: 3-Pentanone(96-22-0) 1H NMR spectrum (chemicalbook.com)

ow resolution carbon-13 nuclear magnetic resonance (¹³ C- NMR) spectral analysis, using chemical shift values to deduce the number and	Question 8e (2 marks) Complete the tables below to summarise the information provided in the two NMR spectra.	Answer: • Hydrogen environments = 2 and Carbon environments = 1 • Carbon present in the molecule – one of: • $ppm 9 = R-CH_3$ • $ppm 36 = R-CH_2-R$ • $ppm 215 = R_2C=O$
different carbon environments structural determination of organic compounds by ow and high	Number of unique hydrogen environments Number of unique carbon environments	Marking Protocol: One mark for each of the above points. Note: Responses must have both references for the first mark.
resolution proton nuclear magnetic resonance (¹ H- NMR) spectral analysis	Chemical shift (ppm) and likely identity of one carbon in the unknown structure	

deduction of the structures of	Question 8f (2 marks)	Answer:
simple organic		0
compounds using	evidence provided by	Ī
mass	the laboratory and	
spectrometry	instrumental analysis of	
(MS), infrared	the molecules in the	• •
spectroscopy (IR), proton nuclear	unknown organic	Source: https://commons.wikimedia.org/wiki/File:3-Pentanone.png
magnetic	compound, draw the	
resonance (¹ H-	skeletal structure of	Marking Protocol:
NMR) and	one molecule in the	Two marks awarded for the correct skeletal formula of pentan-3-one, as
nuclear magnetic	space below.	shown above.
resonance (¹³ C-	I	Only award one mark if pentan-3-one is represented as a structural
NMR) (limited to		formula or semi-structural formula.
data analysis) the roles and		
applications of		
laboratory and		
instrumental		
analysis, with reference to		
product purity		
and the		
identification of		
compounds or		
, functional groups		
in isolation or		
within a mixture		
applications of	Question 8g (1 mark)	Answer:
mass	State the IUPAC,	• Pentan-3-one.
(excluding	systematic name for	
features of	the molecule drawn in	Marking Protocol:
instrumentation	Question 8f.	One mark for the above point.
and		Note: If a valid attempt at identifying the molecule has been made, apply
interpretation of		consequential marks for the correct naming of the incorrect molecule
qualitative and		
quantitative data, includina		
identification of		
molecular ion		
peak,		
aetermination of molecular mass		
and identification		

of simple fragments The diagram below shows the operation of the Downs cell to produce sodium metal and chlorine gas.

Source: File:Downs cell diagram.jpg

the common Question 9a (3 marks) design features and general operating principles of commercial electrolytic cells (including, where practicable, the removal of products as they form), and the selection of suitable electrode materials, the electrolyte (including its state) and any chemical additives that result in a desired

electrolysis product (no specific cell is required)

Describe three of the operating features, shown in the diagram of the cell, that are required for the production of sodium metal and chlorine gas in the Downs cell.

Answer:

- Molten NaCl to prevent the reduction of water at the cathode.
- Voltage must be supplied from an external source as this is a nonspontaneous reaction/electrolytic cell.
- Mesh screen to prevent mixing of products that would spontaneously react.
- Molten NaCl to prevent oxidation of water at the anode.
- Products of the reactions are removed as they form to prevent reverse reactions.
- Inert electrodes that would not need to be replaced.
- No water is present as sodium metal reacts violently with water.

Marking Protocol:

One mark for any of the above points, to a maximum of three.

the sustainability of the production of chemicals, with reference to the green chemistry principles of use of renewable feedstocks, catalysis and designing safer chemicals

Question 9b (4 marks) Chemists are challenged to modify the operating conditions and energy requirements of commercial cells to help reduce environmental damage and improve safety. The two green chemistry principles that outline these requirements are:

- Use of renewable feedstocks
- Designing safer chemicals

Explain how

modifications could be made to the Downs cell to help the commercial production of sodium align with these green chemistry principles.

Answer:

Renewable feedstocks responses:

- Sources of energy for use in the Downs cell should be derived from natural sources that can be replenished or recycled (renewable), reducing the environmental impact of mining and minimising depletion.
- Biofuels should be chosen over fossil fuels so that CO₂ emissions are partially offset by plant photosynthesis, improving sustainability.
- The heat generated by resistance in the cell should be used to keep the electrolyte molten, rather than relying on fossil fuels.
- A hydrogen fuel cell for electrical energy should be used hydrogen can be generated sustainably through the use of solar-powered fuel cells. The main feedstock is water, which is (reasonably) abundant and renewable.
- Electrode materials that are more efficient at conducting electricity should be selected, so that reliance on fossil fuels for energy is reduced.

Safer chemicals responses:

- Design the cell to run with safer additives to the molten electrolyte/CaCl₂ is known to be toxic.
- Develop advanced methods for the capture and use of toxic Cl₂ gas to ensure safety.
- Develop safer handling protocols for sodium metal as it is highly reactive.
- Improve the design of the cell to minimise spills and leaks given high operating temperatures.
- Design appropriate safety mechanisms into the cell, such as insulation, to help avoid burns associated with high temperatures.

Marking Protocol:

One mark for any of the above points, to a maximum of four. Note: Both green principles must be referred to in the response.

VCE UNITS 3&4 CHEMISTRY

Written Examination **ANSWER SHEET** – 2024

Student name:

Use a **PENCIL** for **ALL** entries. For each question, shade the box which indicates your answer.

Marks will **NOT** be deducted for incorrect answers.

NO MARK will be given if more than ONE answer is completed for any question.

If you make a mistake, ERASE the incorrect answer - DO NOT cross it out.

1	A B C D	11	A B C D	21	A B C D
2	A B C D	12	A B C D	22	A B C D
3	A B C D	13	A B C D	23	A B C D
4	A B C D	14	A B C D	24	A B C D
5	A B C D	15	A B C D	25	A B C D
6	A B C D	16	A B C D	26	A B C D
7	A B C D	17	A B C D	27	A B C D
8	A B C D	18	A B C D	28	A B C D
9	A B C D	19	A B C D	29	A B C D
10	A B C D	20	A B C D	30	A B C D