Student Name:	

CHEMISTRY 2024

Unit 3 Key Topic Test 2 – Measuring Changes in Chemical Reactions

Recommended writing time*: 45 minutes
Total number of marks available: 50 marks

QUESTION BOOK

© TSSM 2024 Page 1 of 12

^{*} The recommended writing time is a guide to the time students should take to complete this test. Teachers may wish to alter this time and can do so at their own discretion.

Conditions and restrictions

- Students are permitted to bring into the room for this test: pens, pencils, highlighters,
- Permitted items include pens, pencils, erasers, sharpeners, rulers and VCAA Chemistry Data Book.
- Students are NOT permitted to bring into the room for this test: blank sheets of paper and/or white out liquid/tape.
- A scientific calculator is permitted in this test.

Materials supplied.

Question and answer book of 12 pages.

Instructions

- Print your name in the space provided on the top of the front page.
- All written responses must be in English.

Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic communication devices into the room for this test.

© TSSM 2024 Page 2 of 12

SECTION A – Multiple-choice questions

Instructions for Section A

Answer **all** questions.

Choose the response that is **correct** or **best answers** the question.

A correct answer scores 1, an incorrect answer scores 0.

No mark will be given if more than one answer is completed for any question.

Marks will **not** be deducted for incorrect answers.

Question 1

The complete combustion of 5.0 g of which of the following fuels produces the greatest mass of carbon dioxide.

- A. Methane
- **B.** Ethane
- C. Ethanol
- **D.** Hydrogen

Question 2

Equal volumes of methane, ethane, butane and ethyne are completely combusted at SLC. Which of these gases requires the greatest volume of oxygen for combustion?

- A. Methane
- B. Ethane
- C. Butane
- **D.** Ethyne

Question 3

The nutritional information for a particular biscuit state that the energy content is 2180 kJ/100g. A 1.5 g sample of the biscuit is combusted and used to heat 500.0 g of water. Assuming complete combustion of the biscuit and no loss of energy to the surroundings, the increase in temperature of the water would be closest to:

- **A.** 10 °C
- **B.** 23 °C
- C. 2 °C
- **D.** 15 °C

Question 4

100 g of water was heated in a calorimeter for 6.0 minutes. The voltage was recorded as 3.10 V and current as 2.0 A. The temperature of the water increased by 12.5 °C. The calibration factor of the calorimeter is: $J^{\circ}C^{-1}$

- **A.** $3 I^{\circ}C^{-1}$
- **B.** $215 I^{\circ}C^{-1}$
- **C.** $300 I^{\circ}C^{-1}$
- **D.** $180 I^{\circ}C^{-1}$

© TSSM 2024 Page 3 of 12

Question 5

3.0 L of H_2 and 5.0 L of N_2 react in a closed vessel. The volume of NH_3 produced (at SLC) is closest to:

- **A.** 8.0 L
- **B.** 4.0 L
- **C.** 6.0 L
- **D.** 2.0 L

Question 6

50.0 g of ethanol was reacted with 20.L of oxygen at SLC. What mass of water could be produced by the reaction?

- **A.** 70.0 g
- **B.** 76.0 g
- **C.** 14.5 g
- **D.** 19.5 g

Question 7

The amount of energy released by the complete combustion of 2.5 g of H₂ is closest to:

- **A.** 700 kJ
- **B.** 350 kJ
- **C.** 25 kJ
- **D.** 50 kJ

Question 8

0.75 g of methanol was combusted and used to heat 100 g of water. The temperature of the water increased by 29.0 °C. The energy transformation efficiency of the heating of the water was closest to:

- **A.** 50%
- **B.** 60%
- **C.** 70%
- **D.** 80%

Question 9

50.0 g of a particular food was found to contain 25.0 g of carbohydrate, 15.5 g of fat and 7.0 g protein. The energy content of the food is closest to:

- **A.** 1090 kJ/100g
- **B.** 2200 kJ/100g
- **C.** 1130 kJ/100g
- **D.** 1590 kJ/100g

© TSSM 2024 Page 4 of 12

Question 10

Which of the following contains the most energy?

- **A.** 6.0 g kerosene**B.** 12.0 g diesel
- C. 15.0 g octaneD. 3.0 mol butane

© TSSM 2024 Page 5 of 12

SECTION B

Instructions

Answer **all** questions in the spaces provided.

Where a numerical answer is required give your answer to the correct number of significant figures.

In questions where more than one mark is available, appropriate working **must** be shown.

Unless otherwise indicated, any diagrams in this book are **not** drawn to scale.

Question 1 (23 marks)

A student carried out an experiment to investigate the heat of combustion of two alcohols, ethanol (1360 kJ/mol) and propanol (2021 kJ/mol). The temperature in the laboratory was 25.0°C and the pressure 100 kPa.

Sections of their practical report are shown below.

Method:

- 100.0 mL of water was placed in a beaker which was clamped 10.0 cm above a spirit burner.
- The temperature of the water was recorded using a thermometer.
- The spirit burner was filled with the alcohol and weighed.
- The fuel was ignited and allowed to burn until the water increased in temperature by approximately 20.0°C.
- The flame was extinguished, the spirit burner allowed to cool and then reweighed.
- The procedure was repeated with the second alcohol.

Results:

	Ethanol	Propanol
Mass of water (g)	100.0	100.0
Mass of burner and alcohol – initial (g)	130.52	148.50
Mass of burner and alcohol – final (g)	129.19	147.68
Temperature of water – initial (°C)	17.5	18.0
Temperature of water – final (°C)	37.9	38.7

© TSSM 2024 Page 6 of 12

(a) Complete the following table, showing the appropriate calculations.

	Ethanol	Propanol
Energy released by combustion of the alcohol (J).		
Energy absorbed by the water (J).		

4 marks

(b) Did the experimentally determined values for the heats of combustion agree with the values above? Account for any differences.							

2 marks

© TSSM 2024 Page 7 of 12

(c) List two changes that could be made to the experimental design which would improve the accuracy of the results obtained.						
2 mark						
(d) Using the experimentally determined molar heats of combustion write balanced thermochemical equations for each of the reactions.						
4 mark						
(e) Using the experimentally determined results calculate the mass of carbon dioxide produced per kJ of energy for the ethanol.						
4 mark						

© TSSM 2024 Page 8 of 12

f) Using the experimentally determined results for propanol calculate the volume of carbon dioxide produced per kJ of energy.						
	4 marks					
(g) Calculate the energy efficiency of the apparatus used in the experiment for propanol.						
	3 marks					

© TSSM 2024 Page 9 of 12

Question 2

13 marks

A solution calorimeter was calibrated electronically and used to determine the ΔH for the dissolution of solid calcium chloride hexahydrate (CaCl₂.6H₂O) in water to form Ca²⁺ and Cl⁻ ions. The table below shows experimental data for the calibration and the dissolution.

Calibration				
Volume of water (mL)	100			
Voltage (V)	3.50			
Current (A)	4.00			
Time (s)	40.0			
Temperature change (°C)	+ 0.800			
Dissolution of CaCl ₂ .6H ₂ O (s)				
Mass CaCl ₂ .6H ₂ O (g) 7.00				
Volume of water (mL)	100			
Temperature change (°C)	-0.950			

a.	Calculate the calibration factor (C.F.) for the calorimeter (J °C -1)					
	3 marks					
b.	Calculate the energy change for the dissolution of the calcium chloride hexahydrate (J).					
	2 marks					

© TSSM 2024 Page 10 of 12

c.	Determine the ΔH for the reaction (kJ mol ⁻¹) and write the thermochemical equation.					
	4 marks					
d.	Predict the final temperature in the calorimeter if 3.00 g of calcium chloride hexahydrate were used and the initial temperature of the water was $19.0~^{\circ}$ C. Assume the same calorimeter and volume of water were used.					
	4 marks					

© TSSM 2024 Page 11 of 12

Question 3

The production	of biogas by	anaerobic	digestion	of o	rganic	wastes	has ma	any stages.	One o	of the
reactions in this	s process is:									

$$CH_{3}COOH\left(l\right)+H_{2}O\left(l\right) \Rightarrow CH_{4}\left(g\right)+H_{2}O\left(g\right)+CO_{2}\left(g\right)$$

Determine the total volume (SLC) of greenhouse gases produced from the reaction of 300 g CH_3COOH .) g of	
4	marks	

Total 50 marks

END OF KEY TOPIC TEST

© TSSM 2024 Page 12 of 12