Further Mathematics Examination 2 Solutions

Section A

Core : Data analysis

Question 1

	categorical	[A1]
b.	$\begin{array}{c ccccc} 0 & 1 & 7 & 8 & 9 \\ 1 & 2 & 3 & 6 & 8 & 9 & 9 \\ 2 & 0 & 1 & 3 & 7 \\ 3 & 3 & \end{array}$	
	3 3	[A1]
c.	males are negatively skewed, f	emales
	are symmetrical	[A1]

- **d.** median = 18 [A1]
- **e.** Interquartile range = 22 6 = 16 [A1]
- f. 1.5 IQR = 24 [M1]

Upper 'fence' = $Q_3 + 24$ = 46 \Rightarrow not an outlier [A1]

Question 2

- a. Since gender may influence attitude to smoking, it is the independent variable. [A1]
- b. 22 [A1]
- c.

	Female	Male	
For smoking	65.3	53.7	
Against smoking	34.7	46.3	
	100%	100%	[A

d. Based on this sample there appears to be a relationship. [A1]
A higher percentage of females (65.3%)
then males (52.7%) are in favour of

than males (53.7%) are in favour of smoking in casinos. [A1]

Question 3

a. $M = 5.02 \times 2 - 2.65$ [A1] M = 7.39 M = \$7 (to the nearest dollar) b. As the number of hours gambled increases by 1, money lost increases by \$5.02 (the gradient of the linear equation). [A1]
c. The predicted loss before you start gambling is \$2.65. Therefore no practical significance can be applied to this result. [M1]

[M1] Total: 15 marks

Section **B**

Module 1 : Number patterns and applications

Question 1

a.	The sequence is arithmetic with $a = 1$ d = 0.6	.8 and
	$4^{\text{th}} \text{ term} = 3 + 0.6 = 3.6$	
	$5^{\text{th}} \text{ term} = 3.6 + 0.6 = 4.2$	[A1]
b.	a = 1.8, d = 0.6	[A1]
	$L_n = a + (n - 1)d$	
	$= 1.8 + (n-1) \times 0.6$	[H1]
	= 1.2 + 0.6n	
c.	1 litre / minute = 60 litres / hour	
	We need to find n when $L_n = 60$	
	Substituting in L _n	
	60 = 1.2 + 0.6n	[M1]
	58.8 = 0.6n	
	$n = 58.8 \div 0.6$	
	= 98	[A1]
	In the 98 th hour	
d.	Find the sum of the first 24 terms :	

$$S_{24} = \frac{24}{2} [2 \times 1.8 + 23 \times 0.6]$$
 [M1]
= 208.8

208.8 litres in total will leak from the [A1] crack in the first 24 hours.

Question 2

- a. Increase = 7 5 = 2 litres $\frac{2}{5} \times 100 = 40\%$ increase [A1]
- **b.** The difference equation

 $T_n = aT_{n-1}$ can be rearranged to give

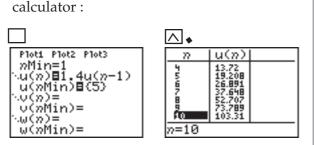
$$\frac{T_n}{T_{n-1}} = a$$

Hence $a = \frac{T_2}{T_1} = \frac{7}{5} = 1.4$ [A1]

Alternatively, you can use the fact that a percentage increase of 40% gives a multiplying factor of 1.4

c. 1 litre/minute = 60 litres/hour

We need to find n such that $T_n = 60$ Recognising that this is a geometric sequence we can substitute in and solve $T_n = a \times r^{n-1}$ $60 = 5 \times 1.4^{n-1}$ [M1] $12 = 1.4^{n-1}$


Using trial and error on the calculator:

Hence $1.4^{n-1} = 12$ for a value of (n-1) between 7 and 8

And so for a value of n between 8 and 9.

So the amount leaking will exceed 60 l/hour during the 9th hour. [A1]

Alternatively using **Seq**uence mode on the

Clearly the amount exceeds 60 l/hour in the 9th hour.

d. Substituting a = 5 and r = 1.4 in the equation for S_n for a geometric sequence :

$$S_{10} = \frac{5(1.4^{10} - 1)}{1.4 - 1}$$
[M1]

Or using the calculator:

sum(and seq(are accessed under LIST

Question 3

This is a geometric sequence with

a = 20 and r =
$$\frac{17}{20}$$
 = 0.85

Hence we can find a sum to infinity because -1 < r < 1 [M1]

$$S_{\infty} = \frac{a}{1-r} = \frac{20}{1-0.85} = 133.33...$$
 [A1]

133 l will leak from the crack from the time Deidre starts monitoring.

Total: 15 marks

Module 2 : Geometry and trigonometry

Question 1

 The triangle is an isosceles right-angled triangle, therefore the angle of decline is 45°. Or using trigonometry

$$\theta = \tan^{-1}\left(\frac{4}{4}\right) = \tan^{-1} 1 = 45^{\circ}$$
 [A1]

b Lengths AB and CD are the same and using Pythagoras

Length AB or CD Total Length

$$c^{2} = a^{2} + b^{2}$$
 = 2 × $\sqrt{32}$ + 6
 $c^{2} = 4^{2} + 4^{2} = 32$ = 17.3137.. [M1]
 $c = \sqrt{32}$ ≈ 17.3 metres [A1]

Question 2

- a The complementary angle to N27°E is 63° and added to 90° (from east to south) gives a total angle for ∠OAB of 153° [A1]
- **b** For Distance: Using Cosine Rule where a = xm b = 180m c = 140mand $\angle A = 153^{\circ}$

$$a^{2} = b^{2} + c^{2} - 2bc \times \cos A$$

$$a^{2} = 180^{2} + 140^{2} - 2 \times 180 \times 140 \times \cos 153^{\circ} \quad [M1]$$

$$a^{2} = 96906.729$$

$$a = \sqrt{96906.729}$$

$$a = 311.298.. \approx 311 \text{ metres}$$

$$A \begin{bmatrix} 140 \\ 153^{\circ}x \\ 180 \end{bmatrix} \quad [A1]$$

For Direction: Using the Sine Rule where

$$a = 311.298 \text{ m} \ \angle A = 153^{\circ}$$

$$c = 140 \text{ m} \text{ and } \angle C = x^{\circ}$$

$$\frac{a}{\sin A} = \frac{c}{\sin C}$$

$$\frac{311.298}{\sin 153^{\circ}} = \frac{140}{\sin x^{\circ}}$$

$$x^{\circ} = \sin^{-1}(0.20417..) = 11.781^{\circ} \approx 12^{\circ}$$
[M1]

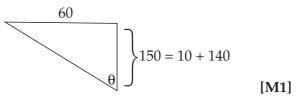
where the bearing is N 12° E [A1]

c G because the contour lines are closest together. [A1]

d Gradient =
$$\frac{rise}{run} = \frac{4}{15}$$

or 1 in 3.75 [A1]

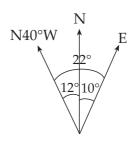
Question 3

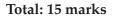

 a
 Clubhouse

 Hole 1
 20
 40

 Hole 2
 60
 390

 400
 80
 Hole 4


 540
 540

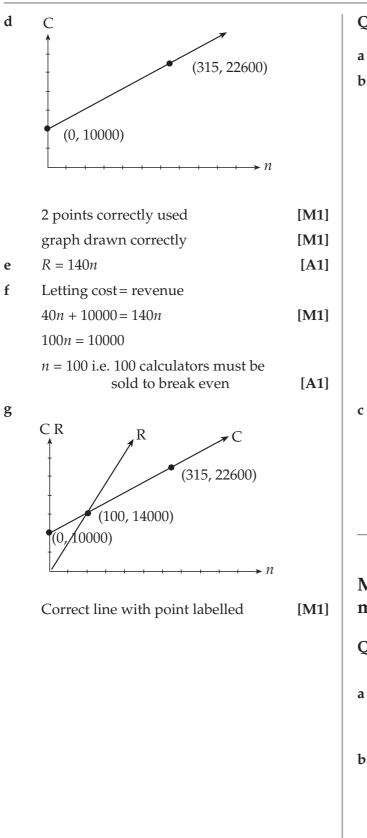


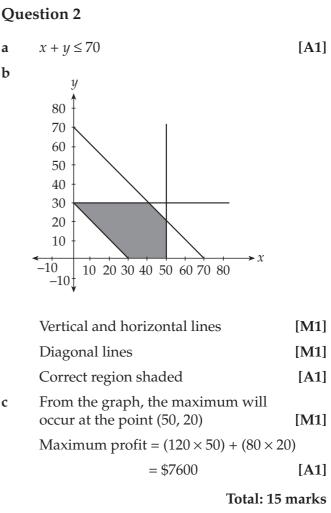
$$\tan \theta = \frac{60}{150}$$

 $\theta = \tan^{-1}(0.4) = 21.8^{\circ} \approx 22^{\circ}$
[M1]

and as a bearing 22° anticlockwise from N 10° E becomes N 12° W

[A1]




Module 3 : Graphs and relations

a <i>a</i> = 40, <i>b</i> = 10000	[A1]
--	------

b
$$C = 40 \times 140 + 10000$$

c
$$22600 = 40n + 10000$$

 $n = 315$ [A1]

Module 4 : Business related mathematics

Question 1

Interest =
$$\frac{PRT}{100} = \frac{10000 \times 8 \times 3}{100} = $2400$$

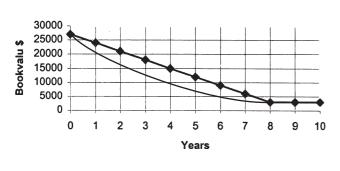
b Total of Investment = Principal + Interest = $$10\ 000 + $2\ 400 = $12\ 400$ [A1]

Time (years)	Balance at start of the year (\$)	Interest earned (\$)	Balance at the end of the year (\$)
1	10 000	800	10 800
2	10 800	$\frac{\text{PRT}}{100} = \frac{10800 \times 8 \times 1}{100} = 864$	11 664
3	11 664	$\frac{\text{PRT}}{100} = \frac{11664 \times 8 \times 1}{100} = 933.12$	1164 + 933.12 = 12 597.12
		[A1]	[A1]

d Compound interest bearing investment [A1]

Question 2

С


С

a A scrap value of \$3 000 [A1]

b Rate of Depreciation =
$$\frac{\text{Total Depreciation \$}}{\text{Years}}$$

= $\frac{\$27000 - \$3000}{\$ \text{ Years}}$
= $\$3000 \text{ per year}$ [M1]

Rate of Depreciation % =
$$\frac{\$3000}{\$27000} \times \frac{100}{1} = 11.1\%$$
 [A1]

Computer Server Bookvalue \$

[A1]

Question 3

a Loan Amount = Purchase – Trade In = \$35 000 – \$3 000 =\$32 000 [M1]

Interest charged =

 $\frac{\text{PRT}}{100} = \frac{32000 \times 5 \times 5}{100} = \$8\,000$

Monthly Repayments = Total repayments Number of Instalments

$$=\frac{\$32000+\$8000}{5\times12}=\frac{\$40000}{60}=\$666.67$$
 [A1]

b Effective interest rate =
$$\frac{2 \times n}{n+1} \times$$
 Flat Rat
= $\frac{2 \times 60}{60+1} \times 5\%$

= 9.836% = 9.8% **[A1]**

c Loan Amount is the same as in **a**.

= \$659.62

$$Q = \frac{PR^{n}(R-1)}{R^{n}-1}$$

where $R = 1 + \frac{\frac{8.7}{12}}{100} = 1.00725$ [M1]


$$Q = \frac{32000 \times 1.00725^{60} (1.00725 - 1)}{1.00725^{60} - 1}$$

Total: 15 marks

Module 5 : Networks and decision mathematics

Question 1

a. Task D completes the network. [A1]

b. Task C is not on the critical path so the latest it can start is 11days before the end of the project. (Task C takes 7 days and task I takes 4 days)

Hence the LST for C is 26. [A1]

Task F is on the critical path so the **EST is day 23** (A takes 5 days, B takes 12 and E takes 5; a total of 22 days).

c. The float (slack time) for task G is

$$LST - EST = 31 - 26$$

= 5 days [A1]

d. The critical path is ABEFHI.

Any task on this path, if delayed
will delay the completion time
of the project.[A1]

e. Completion time is 37 days [A1]

Question 2

a. It is sensible to shorten the tasks that are on the critical path.

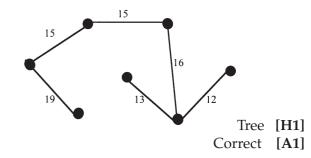
Hence tasks B, E, H and I should be shortened. (A and F cannot be shortened).

b. B can be shortened 5 days, E can be shortened 1 day, H can be shortened 4 days and I can be shortened 2 days; a total of 12 days.

Hence the new completion time is

c. The additional cost is

 $5 \times \$100 + 1 \times \$200 + 4 \times \$150 + 2 \times \150


= \$1600

[H1]

[A1]

Question 3

a. The minimal-length spanning-tree is :

b. The sum of the lengths on the **tree** above; 80 metres [H1]

Question 4

[A1]

Using the Hungarian algorithm :

Subtract the minimum from each of the rows

	And.	Tom	Carl.	Eric
Р	400	200	0	500
Q	160	250	0	400
R	1100	1500	0	1000
S	0	200	400	100

Subtract the minimum from each of the columns and cover the zeros with a minimum of lines :

	And.	To	m	Ca	rl.	Eric
P	400	0			0	400
Q	160	5	þ		0	300
R	1100	13	00		0	900
S	0	- (-	4	00 -	0

There are only three lines (we need four for a solution)

Add the minimum uncovered number (160) to the elements at the intersections of the lines and subtract it from the elements not covered by the lines :

	And.	То	n	Ca	rl.	Eric
P	240)		þ	240
Q	(0)	5)		þ	140
R	940	13)0		D	740
S	0	16	0	5	60	

We now have an additional line and an independent set of zeros

```
[M1] (circled)
```

Task P is allocated to Tom, Q to Andrew, R to Carlo and S to Eric [A1]

Total: 15 marks

[M1]