MAV Further Mathematics Examination 2 Answers & Solutions

Solutions

Core : Data analysis

Question 1

a.	5-number summary: Min = 153	
	Lower quartile = 174	
	Median = 196	
	Upper quartile = 217 Max = 244	
		Box [A]
	Whisk	kers [A]
	160 180 200 220 240	
b.	i Shape : Symmetrical	[A]
	ii Centre : Attendance figures are centred around the median, 196.	[H]
	iii Spread : Attendance figures are spread over 91 values (range)	[H]
	OR The middle 50% of attendance are spread over 43 values (IQR)	S
Que	stion 2	
a.	i Positive correlation.	[A]
	ii As maximum daily temperature increases the attendance also increases	[4]
b.	Attendance = $79.3 + 4.01 \times \text{max. daily}$	temp.
	Figures correct	[A]
c.	"increases by 4 "	[A]
d	20°.	[]
	Attendance = $79.3 + 4.01 \times 20$	
	≈ 160	[H]
	35°:	
	Attendance = $79.3 + 4.01 \times 35$	
	≈ 220	[A]
	Correctly plotted line.	
	(20,160); (35, 220) or sensible points	[H]

e.	i.	$r^2 = (0.884)^2 \approx 0.781$	1
----	----	---------------------------------	---

[A]

ii "78.1% of the variation in attendance can be explained by the variation in maximum daily temperature."

(sensible) [H] Total 15 marks

Module 1: Number patterns and applications

Question 1

a.	13,15 or a total of 28 seats	[A]
	The pattern goes up by +2 each time, that is 7, 9, 11, 13, 15	
b.	Common difference,	
	$d = t_2 - t_1 = t_3 - t_2 = t_4 - t_3$	
	Common difference	
	$= t_2 - t_1 = 9 - 7 = +2$	
	$= t_3 - t_2 = 11 - 9 = +2$	
	$= t_4 - t_3 = 13 - 11 = +2$ and so on	[A]
c.	Arithmetic sequence; substitute first term, $a = 7$, common difference, d = 2 and $n = 25$ into	
	$S_n = \frac{n}{2} \left(2a + (n-1)d \right)$	
	$S_n = \frac{25}{2} \left(2 \times 7 + (25 - 1)2 \right)$	[M]
	$S_{25} = 12.5(14 + 48)) = 775$	
	Total of middle section is 775 seats. Hence total seating capacity for the dress circle is	
	$3 \times 775 = 2325$ dress circle seats	[A]

d.	From the ratio 25 shares = 2 325 seats	
	therefore	
	1 share $= 2325 \div 25 = 93$ seats	[M]
	total seats = $(10 + 25) = 35$ shares	[M]
	$= 35 \times 93 = 3255$ seats	[A]
	Or alternatively	
	Upper circle = 10 shares	
	$= 10 \times 93 = 930$ seats	
	Total seats = lower + upper	
	= 2325 + 930 = 3 255 seats in	total

Question 2

a. Common ratio, $r = \frac{r_2}{r_1} = \frac{r_3}{r_2} = \frac{r_4}{r_3}$ if geometric $\frac{r_2}{r_1} = \frac{27000}{30000} = 0.9$ $\frac{r_3}{r_2} = \frac{24300}{27000} = 0.9$ $\frac{r_2}{r_1} = \frac{21870}{24300} = 0.9$ and so on $\Rightarrow r = 0.9$ [A]

b. Common ratio r = 0.9 is 90% of previous weekly sales or (100% – 90%) a 10% weekly decrease [A]

- c. Geometric sequence a = 30 000 , r = 0.9 and $t_n = 7 000$ $t_n = ar^{n-1}$ $7000 = 30000 \times 0.9^{n-1}$ [M]
 - $\frac{7000}{30000} = 0.9^{n-1}$ $(n-1)\log 0.9 = \log \frac{7}{30}$ $n-1 = \frac{\log_e(7 \div 30)}{\log_e 0.9}$ n-1 = 13.812.. n = 14.812..Therefore it will take 15 weeks before the total weekly sales drops below 7000. [A]

Or use Trial & Error Technique

$$t_n = ar^{n-1}$$

7000 = 30000 × 0.9ⁿ⁻¹ Or [M]
 $\frac{7000}{30000} = 0.9^{n-1}$
 $0.9^{n-1} = 0.23333....$
try $n = 10$
 $0.9^{10-1} = 0.9^9 = 0.387..$
which is greater than 0.23333
 $n = 16$
 $0.9^{16-1} = 0.9^{15} = 0.205..$ which is
less than 0.23333
 $n = 14$
 $0.9^{14-1} = 0.9^{13} = 0.254..$ which is
greater than 0.23333
 $n = 15$
 $0.9^{15-1} = 0.9^{14} = 0.228.$ which is
just less than 0.23333

Question 3

a.
$$a = 100\% -5\% = 95\%$$
 or 0.95
 $b = +50$ [A]

b. The general form of a difference equation of the form $t_{n+1} = at_n + b$; $t_1 = 30\,000$ is

$$t_n = a^{n-1}t_1 + \frac{b(1-a^{n-1})}{1-a} \text{ and for}$$

$$a = 0.95$$

$$b = +50; \quad t_1 = 30\ 000$$

$$t_n = 0.95^{n-1} \times 30000 + \frac{50(1-0.95^{n-1})}{1-0.95} \quad [M]$$

$$t_{30} = 0.95^{30-1} \times 30000 + \frac{50(1-0.95^{30-1})}{1-0.95}$$

$$t_{30} = 7552.13068.. \text{ which is greater}$$

$$t_{30} = 7552.13068.. \text{ which is greater}$$

$$t_{30} = 7000 \quad [M]$$

	or ALTERNATIVELY an iteration tech	nnique	e. $706.94 + 495 = 1201.94 \text{m}^2$	
	using the difference equation to gener 30 terms e.g. 30000, 28550, 27172.5, 25863 875, 24620 68125	ate	The estate agent has underestimated the area of the block by 1.94m ²	
	Therefore the show will still be above		(2m ² acceptable) [[H]
	the 7000 limit	[A]	Question 2	
	Total 15	marks		
			44 60 m	
Mo	dule 2 : Geometry and trigonometr	у		
_			52.5 m	
Que	estion 1			
a.	$DB^2 = 33^2 + 30^2$	[M]	C	
	$DB = \sqrt{1989}$		Using cosine rule :	
	≈ 44.60m	[A]	$DC^2 = 44.6^2 + 32.5^2$	
-	33		$-2 \times 44.6 \times 32.5 \cos 77.27^{\circ}$ [1	M]
b.	i. $\tan(\angle ABD) = \frac{32}{30}$		DC = 49.06m	[A]
	$\angle ABD = 47.73^{\circ}$	[A]	(Correct to two decimal places)	
	(Correct to two decimal places)	F A 1	b. B	
	11. $\angle DBC = 125^{\circ} - \angle ABD$		- 77.27°	
	$= 125^{\circ} - 47.73^{\circ}$		44.60 m	
	$= //.2/^{2}$		32.5 m	
	(Correct to two decimal places)		D	
c.	Right-angled triangle :		C	
	Area = $\frac{1}{2}$ × base × height		<u> </u>	
	$=\frac{1}{2}\times30\times33$	[M]	$\sin \angle BDC \sin 77.27^{\circ}$	
	$= 495 \text{ m}^2$	[A]	$\sin \angle BDC = \frac{32.5 \times \sin 77.27^{\circ}}{49.06} $	M]
			$\angle BDC = 40.25^{\circ} \approx 40^{\circ}$	[A]
d.	В		A	
	77.27°			
	44.60 m		North	
	32.5 m			
	D		42.27 Bearing of C 32.5 m	
	\sim C		40.25°	
	Area = $\frac{1}{2} dc \sin B$		D	
	$= \frac{1}{2} \times 32.5 \times 44.6 \sin 77.27^{\circ}$	[M]	Bearing = $(42.27 + 40.25)^{\circ}T$ = 82 52°T	
	$= 706.94 \text{ m}^2$	[A]	≈ 083°T	[A]
	(Correct to two decimal places)		(082°T acceptable)	
			Total 15 mar	rks

Module 3: Graphs and relations

Question 1

a. X-axis label – Distance from Speakers (metres) [A]

b. Distance from 5 10 40 Speakers, x 20 (metres) $\frac{1}{x^2}$ 0.04 0.0025 0.000625 0.01 Sound Intensity, 0.1 0.025 0.00625 0.001563 Ι

- **d.** Yes as it forms a straight line
- e. Gradient of line using the two points (0.01,0.025) and (0.04,0.1)

$$k = \frac{y_2 - y_1}{x_2 - x_1}$$

$$k = \frac{0.1 - 0.025}{0.04 - 0.01} = \frac{0.075}{0.03} = 2.5$$
 [M] [A]

[A]

Question 2

a.	Constraint 4	$x \le 600$	[A]
	Constraint 5	$x + y \le 1000$	[A]

Maximum ticket sales = \$8000 [A]

They must sell 600 front section tickets and 400 rear section tickets in order to achieve this maximum ticket sales revenue. [A]

Total 15 marks

Module 4 : Business related mathematics

Question 1

a.	\$30 000 - \$20 000 = \$10 000	[A]
b.	Investment A : \$750 (since simple interest)	[A]
	Investment B : \$749 (7% of \$10700)	[A]
c.	Points plotted at (2, 11500) and (2, 11449)	[M]
d.	Investment A drawn as a straight line through the points plotted	[M]
	Investment B drawn as an upward curve through the points plotted	[M]
e.	Year 3	[A]
f.	Using a trial method or by setting up 2 equations on the calculator e.g. on the TI – 83 $y_1 = 10000 + 750x$	[M]
	$y_2 = 10000 \times 1.07^x$	
	After year 7 both investments have reached \$15000	[A]
	(this can be found from the table of values on the calculator)	

Question 2

$$R = 1 + \frac{6}{\frac{12}{100}} = 1.005$$
 [A]

b. Substituting all the correct values into the formula

$$0 = 180000 \times 1.005^{300} - \frac{Q(1.005^{300} - 1)}{1.005 - 1} \quad [\mathbf{M}]$$

Solving to give Q = \$1159.74 [A]

This could be done using the TVM solver on the TI-83 as follows

N = 300 I% = 6 PV = -180000PMT (to be solved) FV = 0 P/Y = 12 C/Y = 12

- c. $300 \times 1159.74 180000 = 167922
- d. The extra interest paid because of the higher principal would mean that Bob would pay more to the bank overall. [A]
 Total 15 marks

Module 5: Networks and decision mathematics

Question 1

d.

a. It is a connected graph with all vertices having an even degree [A]

 $A \rightarrow B \rightarrow C \rightarrow D \rightarrow E \rightarrow C \rightarrow F \rightarrow E \rightarrow G \rightarrow F \rightarrow B \rightarrow G \rightarrow A$ other answers possible

c. $A \to B \to C \to D \to E \to F \to G \to A$ [A]

 $\begin{array}{c} B \\ 0 \\ 15 \\ 15 \\ 10 \\ F \\ 0 \\ G \\ \end{array}$

[**M**]

e. sum of weights =115 [**M**]

Award this mark provided the sum is correct for their graph (must be a tree)

Question 2

F drawn from end of activities C and D	[M]
G drawn from the meeting of the ends of activities E and F	[M]
Note : arrows must be included	
Earliest start time for F is 7	[A]
Latest start time for D is 3	[A]
Critical path $A \rightarrow C \rightarrow F \rightarrow G$	[A]
Project completion time is 20 mins	[A]
Float (slack) time for this activity is 2 minutes therefore they will go 1 minute overtime resulting in a \$10 fine	[A]
	F drawn from end of activities C and D G drawn from the meeting of the ends of activities E and F Note : arrows must be included Earliest start time for F is 7 Latest start time for D is 3 Critical path $A \rightarrow C \rightarrow F \rightarrow G$ Project completion time is 20 mins Float (slack) time for this activity is 2 minutes therefore they will go 1 minute overtime resulting in a \$10 fine

Question 3

[A]

Ken to Oval 3, Mark to Oval 2, Richard to Oval 1, Tony to Oval 4

Use of Hungarian algorithm or other	
appropriate method	[M]
Two coaches assigned to the correct ovals	[A]
All four coaches correctly assigned	[A]

Working for Hungarian algorithm (generally accepted method)

1. Subtract the minimum entry in each row from each element in the row

	Oval 1	Oval 2	Oval 3	Oval 4
Ken	5	0	11	3
Mark	5	0	13	3
Richard	0	2	18	0
Tony	3	4	9	0

2. Repeat for any column without a zero entry

	Oval 1	Oval 2	Oval 3	Oval 4
Ken	5	0	2	3
Mark	5	0	4	3
Richard —	0	2	9	0
Tony —	3	4	0	0

- **3.** Minimum number of lines to cover the zero elements is 3 (through column 2 and rows 3 and 4). Since this is less than the number of rows proceed to 4.
- 4. The lowest uncovered element is 2. Add this to the covered rows and columns

	Oval 1	Oval 2	Oval 3	Oval 4
Ken	5	2	2	3
Mark	5	2	4	3
Richard	2	6	11	2
Tony	5	8	2	2

5. This lowest uncovered element of 2 is now subtracted from all entries

	Oval 1	Oval 2	Oval 3	Oval 4
Ken —	3	0	0	-1
Mark —	3	0	2	-1
Richard —	0	4	9	-0
Tony —	3	6	0	

6. The minimum number of lines needed to cover the zeros is now 4 so a bipartite graph can be drawn with the edges chosen from the zero elements.

From this graph Mark must go to Oval 2 and Richard to Oval 1. This leaves Ken with Oval 3 as his only option and Tony with Oval 4 as his only option.

Total 15 marks