D

FURTHER MATHEMATICS EXAM 1 SOLUTIONS

Section A (Core)

Question 1

Mode: The most frequent score was 60 as it occurred three times. Mean:

mean =
$$\frac{\sum scores}{n}$$

= $\frac{8+18+19+22....}{27}$
= $\frac{1134}{27}$
= 42
Median: the middle score

Middle score

$$= \frac{n+1}{2}$$
$$= \frac{27+1}{2} = 14th score$$
$$14^{th} score is 45$$

Alternatively, use graphic calculator with data in list $L_{\rm L}$

1-Var Stats	1-Var Stats
x=42	↑Sx=15.21133181
Σx=1134	σx=14.92698278
Σx²=53644	n=27
Sx=15.21133181	minX=8
σx=14.92698278	Q1=30
↓n=27	↓Med=45

Thus mean, median and mode in that order is 42, 45 and 60.

Question 2

B

Using graphics calculator

The standard deviation is 9.0308.. and to one decimal place it becomes 9.0. Response C is more accurate however accuracy was only wanted to one decimal place as in response B 9.0.

Question 3

The upper and lower medians are $(x_U, y_U) = (6, 20)$ $(x_L, y_L) = (2, 10)$ The gradient of the 3-median regression line is: $\frac{y_U - y_L}{x_U - x_L} = \frac{20 - 10}{6 - 2}$ $= \frac{10}{4}$ = 2.5

B

Question 4 95% limit is

mean plus or minus two standard deviations

95% limit $=\bar{x} \pm 2s$ = $12 \pm 2 \times 0.1$ = 12 - 0.2 and 12 + 0.2= 11.8 to 12.2

С

Question 5EBack-to-back stem plot are for Categorical vsNumerical Bivariate analysis.Response Ebest bench press weight and ageof gymnast are both numerical variables.

Question 6

From this table, the independent variables are gender; male and female. Percentaging by columns, we obtain

D

	Male	Female
In favour of change	$= \frac{123}{575} \times \frac{100}{1}$ $= 21.4\%$	$= \frac{230}{485} \times \frac{100}{1}$ = 47.4%
Against change	$=\frac{452}{575} \times \frac{100}{1}$ $= 78.6\%$	=100% - 47.4% =52.6%
Total	100%	100%

MAV Further Mathematics Examination 1, 2005: SOLUTIONS

Question 7

Median and mean are affected by outliers is a false statement as only mean is affected by an outlier.

D

A

Question 8

The data set contains one outlier with a value of 15 and thus histogram A is correct as it shows the outlier. Option E is not to be considered as the minimum number of groupings is usually five.

Question 9BSum of all seasonal index = number of seasonsSpring + Autumn + 0.78 + 0.92 = 4Spring + Autumn = 4 - (0.78 + 0.92)Spring + Autumn = 2.3Spring = 1.15 as spring and autumn seasonalindices are the same.

E

It is **seasonal** as it repeats low (and high) values every 5th period namely 1st,6th,11th and 16th time period and **increasing** as these values show an upward trend.

Question 11

The median of the three values (37.1, 37.0, 37.5) centred about t = 10 is 37.1

B

t	8	10	12
Temperature	37.1	37.0	37.5

Question 12

If June 2005 has a timecode of 1 then June 2006 has a timecode of 13.

 $Deseasonalised Monthly sales = 1200 \times timecode + 10000$

 $= 1200 \times 13 + 10000$

= 25600

С

Actual expected sales where June seasonal index is 0.8,

Actual figure = *deseaonalised* × *seasonal index*

 $= 25600 \times 0.8$

- = 20480
- =\$20 480

Question 13

B

The above graph can be either compressed in the x-axis or stretched in the y-axis y axis transformation is y^2

x axis transformation can be either $\log x$ or $\frac{1}{x}$ The only option with y^2 and $\log x$ or $\frac{1}{x}$ is B

Section B (Modules)

Module 1: Number patterns and applications

Question 1 The common ratio, $r = \frac{t_2}{t_1} = \frac{1.5}{1} = 1.5$ The 4th term $= t_3 \times 1.5$ $= 2.25 \times 1.5$ = 3.375

Question 2

An arithmetic sequence with first term a = 5 and common difference, d = 5The sum of ten terms:

B

Ε

D

$$S_{10} = \frac{10}{2} [2 \times 5 + (10 - 1) \times 5]$$

= 5[10 + 9×5]
= 5[55]
= 275

Question 3

The sequence is arithmetic with a = 41 and d = -3 Solving $t_n < 0$ a + (n-1)d < 0 $41 + (n-1) \times -3 < 0$ 44 - 3n < 044 < 3n14.667 < nn is greater than 14.667, so n = 15

Question 4

 $t_4 = 9: a + 3d = 9 \dots (1)$ $t_8 = -11: a + 7d = -11 \dots (2)$ Subtract equation (1) from equation (2) 4d = -11 - 9 = -20 d = -5 substituting in (1) gives $a + 3 \times -5 = 9$ a = 24

Question 5 C Substituting in the difference equation: $t_2 = 2 \times t_1 - 1 = 2 \times 3 - 1 = 5$ $t_3 = 2 \times 5 - 1 = 9$ $t_4 = 2 \times 9 - 1 = 17$

Question 6 D

This difference equation generates a sequence that is neither arithmetic nor geometric. You could 'solve' the difference equation by substituting 'a' = 2 and 'b' = -1 and $t_1 = 3$ in : $t_n = a^{n-1}t_1 + \frac{b(a^{n-1} - 1)}{a - 1}$ $t_n = 2^{n-1} \times 3 + \frac{-1(2^{n-1} - 1)}{2 - 1} = 3 \times 2^{n-1} - (2^{n-1} - 1) =$ $2 \times 2^{n-1} - 1 = 2^n - 1$ Alternatively test the solutions to give the sequence 3, 5, 9, 17,.... A gives 3, 5, 7,... B gives 3, 5, 7,... D gives 3, 5, 9, 17 correct E gives 3, 9, ...

Question 7

The original number in the class must be divisible by 2 + 3 = 5. (Only whole numbers are possible for 'people') Add 2 to the original number and the answer must be divisible by 3 + 4 = 7The only answer that this is possible for is 40; $\frac{40}{5} = 8$ and $\frac{40 + 2}{7} = 6$ Alternatively you could solve the equations: m = 2

D

Α

E

$$m: f=2:5 \implies \frac{m}{f} = \frac{2}{5}$$

and $m+2: f=3:4 \implies \frac{m+2}{f} = \frac{3}{4}$

Question 8 $t_1 = a = 4.5 \times (0.4)^1 = 1.8$ $t_2 = 4.5 \times (0.4)^2 = 0.72$ $r = \frac{0.72}{1.8} = 0.4$ $S_{\infty} = \frac{a}{1-r} = \frac{1.8}{1-0.4} = \frac{1.8}{0.6} = 3$

Question 9

Working through the answers:

A: Arithmetic 5, 7, 9, ...

B : Geometric but decreasing 100, 90, 81,...

- C : Increasing but not geometric $\frac{1}{2}, \frac{3}{4}, \frac{7}{8}, \dots$
- D : Geometric but alternating positive, negative.
- E: $\frac{3}{2}$, $\frac{9}{4}$, $\frac{27}{8}$,.... geometric, positive, increasing

Module 2: Geometry & trigonometry

Exterior angle = sum of the two interior angles $140^{\circ} = a + 81^{\circ}$ $a = 140^{\circ} - 81^{\circ}$ $a = 59^{\circ}$

The angle from south is the complimentary angle of 42° which is 48° .

true bearing = $180 + 48 = 228^{\circ}T$ and compass bearing = S 48° W

Question 4

D

Given the two lengths of a right-angled triangle, to find the third length use Pythagoras' Theorem.

From the figure above, the value of the angle opposite side x can be found using the supplementary rule.

Angle $X = 180^{\circ} - 110^{\circ} = 70^{\circ}$

The angle opposite the side of length 23 metres can be found using sums of angles in a triangle rule.

 $180^\circ = 40^\circ + 70^\circ + third angle$

third angle =
$$70^\circ$$

To find the value of *x* use the Sine Rule

$$\frac{a}{\sin A^{\circ}} = \frac{b}{\sin B^{\circ}}$$
$$\frac{x}{\sin(70^{\circ})} = \frac{23}{\sin(70^{\circ})}$$

Ouestion 6 E Volume of a pyramid is $V_{pyramid} = \frac{1}{2}AH$ where area of a square base is $A_{sauare} = l^2$. Therefore given $V_{pyramid} = 4500 \text{ cm}^3$ and H = 10 cm $V_{pyramid} = \frac{1}{3}AH = \frac{1}{3} \times l^2 \times H$ $4500 = \frac{1}{3} \times l^2 \times 10$ $l^2 = 1350$ l = 36.7423Perimeter of a square is Perimeter = 4l $= 4 \times 36.7423$ = 146.969=147Then the perimeter of the base

is closest to E (147 m)

Question 7 A Need one other side before the area can be found.

For side x, using trigonometry

$$\cos \theta = \frac{adjacent}{hypotenuse}$$

$$\cos 20^{\circ} = \frac{x}{18}$$

$$x = 18 \times \cos 20^{\circ}$$

$$x = 16.9145m$$
18 m
209

V

The area of the triangle at

right is

$$A = \frac{1}{2} ab \sin C$$

$$= \frac{1}{2} \times 18 \times 16.9145 \times \sin 20^{\circ}$$

$$= 52.065$$

$$= 52.1 cm^{2}$$

 52.1 cm^2 А

Ouestion 8

Map scale = Linear scale factor, k = 1 : 50 or $\frac{1}{50}$

D

 $k = \frac{1}{50} = \frac{Length \ of \ image}{Length \ of \ original}$ 25*mm* 1 $\overline{50} = \overline{Length \ of \ original}$ Length of original = $50 \times 25mm = 1250mm$

Conversion is $1 \text{ m}^3 = 1000 \text{ litres}$ $1.953 \text{ m}^3 = 1953 \text{ litres}$ The volume of the real refrigerator is closest to D (1950 litres)

Question 9

D 1:250 000 1 cm = 250000 cm1 cm = 2500 mNow from the contour map distance from A to B is 2 *cm* $2cm = 2 \ge 2500 m$ From A to B is 5000 *m*

Е

Module 3 : Graphs and relations.

Question 1 C The line goes through (0, 2) and (6, 10) Gradient $m = \frac{10-2}{6-0} = \frac{8}{6} = \frac{4}{3}$ y-intercept : c = 2Equation : $y = \frac{4}{3}x + 2$ 3y = 4x + 63y - 4x = 6

Question 2

Substitute 3y = x + 2 into equation 3y - 5x = 6 to give (x + 2) - 5x = 6 x + 2 - 5x = 6 - 4x = 4 x = -1Substitute x = -1 into 3y = x + 2 3y = -1 + 2 3y = 1 $y = \frac{1}{3}$

Question 3

C

The pulse rate is between 100 and 140 beats/minute from time 7 minutes to 10 minutes (3 minutes) and from time 32 minutes to 40 minutes (8 minutes). A total of 11 minutes.

Question 4

D

The average rate of change between two points

- = the gradient of the straight line joining the two points.
- = the gradient of the line joining (10, 140) and (40, 100)

100 - 140

40-10

$$=\frac{-40}{30}$$

3

≈ -1.33

Question 5

С

Graphing R = 10.5n on the set of axes: the line goes through the origin (0, 0) and the point (1000, 10500)

The break-even point is the point where the graphs intersect ie. at n = 500

Question 6 E

Photocopying costs: A lot of 50 costs $50 \times 20^{c} = \$10$ A lot of 250 costs $250 \times 10^{c} = \$25$ A lot of 500 costs $500 \times 10^{c} = \$50$ Total cost \$85One lot of 800 costs $800 \times 5 = \$40$ \$85 - \$40 = a saving of \$45

Question 7

Considering the four boundary lines of the feasible region: The lines x = 0 and x = 8 mean x is between 0 and 8 giving the constraint $0 \le x \le 8$

A line goes though the points (0, 20) and (20, 0). This line has the equation x + y = 20 and since the point (0, 0) is in the region the constraint is $x + y \le 20$

E

The line going through the points (0, 0) and (10, 10) has the equation y = x and the feasible region contains the points where the *y* values are greater than the *x* values so the constraint is $y \ge x$

Question 8

The maximum value will occur at one of the **extreme points** (vertices of the feasible region)

Extreme point	V = 3x + 4y
(0, 0)	$3 \times 0 + 4 \times 0 = 0$
(0, 20)	$3 \times 0 + 4 \times 20 = 80$
(8, 12)	3×8+4×12=72
(8, 8)	$3 \times 8 + 4 \times 8 = 56$
m1 · 1	

The maximum value for V = 3x + 4y is 80.

Question 9

From the shape the graph is either $y = kx^2$ or $y = kx^3$ (Eliminates answers D and E) Substituting the point (4, 20) into these equations

gives: $y = kx^2$: $20 = k \times 4^2$ $k = \frac{20}{16} = \frac{5}{4}$

Equation $y = \frac{5}{4}x^2$ $y = kx^3$: $20 = k \times 4^3$ $k = \frac{20}{64} = \frac{5}{16}$ Equation $y = \frac{5}{16}x^3$ The equations from the answers: A: $y = \frac{5}{4}x^2$

B:
$$y = \frac{1}{5}x^3$$

C: $y = \frac{1}{5}x^2$

C:
$$y = \frac{1}{5}x^2$$

The only one that matches is answer A.

Module 4 : Business related Mathematics

Question 1 C If x is the amount that the retailer retains then:x + 10% of x = 59.95 $x + \frac{10}{100}x = 59.95$ x(1+0.1) = 59.95 1.1x = 59.95 $x = \frac{59.95}{1.1}$

Question 2 B Using the simple interest formula: $Interest = \frac{\Pr T}{100}$ $= \frac{15000 \times 5.4 \times \frac{1}{4}}{100}$ = 202.5

Question 3 Monthly interest rate $= \frac{6.72}{0.72} = 0.56\%$

$$R = 1 + \frac{0.56}{100} = 1.0056$$

Using the compound interest formula : Amount owing = PR^n where n = 6 Amount owing = $12500 \times 1.0056^6 = 12925.92$

Е

D

Question 4

The monthly interest rate = $\frac{4.8}{12} = 0.4\%$ so

 $R = 1 + \frac{0.4}{1000} = 1.004$

4 years = 48 months : n = 48P = 1000; the original investment. Regular payments of \$100 : Q = 100 Payments are being added to the initial amount in the account hence the '+' sign between the terms.

Ouestion 5

Using the TVM solver on the calculator:-

N=74.46140774	
1%=4.8	
PV=-1000 PMT=-100	
FV=10000	
P/Y=12	

A

Ouestion 6 The minimum balance for January and February is \$4280

Interest = $\frac{4280 \times 1.5 \times \frac{2}{12}}{100} = 10.7$

The minimum balance for March to June (4 months) is \$3420

Interest =
$$\frac{3420 \times 1.5 \times \frac{4}{12}}{100} = 17.1$$

Total interest for the 6 months = \$27.80

Question 7

\$4400 is owed after the deposit is paid. The repayments total $12 \times 402.60 = 4831.20 The interest paid is 4831.20 - 4400 = 431.20Interest rate = $\frac{431.20}{4400} \times 100 = 9.8\%$

Question 8

R

D

Depreciation of 12% p.a. means a multiplying

factor of $\left(1 - \frac{12}{100}\right) = 0.88$

If the fixtures are valued at \$P initially then their value after n years will be $P \times (0.88)^n$ Solving for n when the value is 0.5P:-

$$0.5 P = P \times (0.88)^{n}$$

 $0.5 = (0.88)^{n}$

Using the calculator to solve:

.88 2744
1 2 2 3 3 1 1
68197
.5997
.4644
7

After 6 years the value will be less than half the original value. This will be at the beginning of the year 2005.

Question 9

E

If the interest rate rises then either they will need to pay more each month or the term of the loan will increase (or a bit of both). They will also pay more in interest over the term of the loan. Using the TVM solver on the calculator will confirm answers A to D.

The TVM solver for answer E shows that they will be paying more than \$1739.61 if they increase the loan to 30 years.

Module 5: Networks & decision mathematics

Question 1AThe number of vertices is 5The number of edges is 9, then respectivelyit is A (5 and 9).

A Euler Path uses every edge only once and if there is a pair of vertices with odd degrees then the path must start at either; in this case F (degree of 1) or A (degree of 3) Answer: C (*A-E-C-B-A-D-E-F*).

Question 3

The first row and first column of the matrix represents the number of edges originating from the vertex A, namely,

B

0 from A, 1 from B, 2 from C or 1 from D or 0 1 2 1

The matrix that represents the network shown above is B

		A	В	С	D	
	A	0	1	2	1]	
В	В	1	0	1	0	
	С	2	1	0	2	
	D	1	0	2	0	

Question 4

Hamiltonian path or circuit uses each vertex once only and for this example one possible path or circuit is B-C-G-D-E-F-A-B

Α

No Euler path is possible.

The true statement is A: *The planar graph has a Hamiltonian path and circuit, but no Euler path or circuit.*

Question 5

D

С

С

D

B

From A to E via B is 7 units Then from E to H via D is 14 units And from H to K either path is 2 units, For a longest path of 23 units.

Question 6

Jade and Rhiannon have lived in four of the cities while Scott and Alisha have lived in three cities.

Question 7

The network diagram shown below gives the times for each activity in hours.

The activities that are immediately before predecessors of Activity G are C (*C and E*).

Question 8

Using Euler's formulae: V = E - F + 2where V = number of vertices, E = number of edges, F = number of faces.

Then the number of faces or regions becomes

F = E - V + 2= 10 - 6 + 2= 6

Question 9

Perform a row reduction by subtracting the smallest value from each row.

The smallest value in row A is 11 The smallest value in row B is 12 The smallest value in row C is 11 The smallest value in row D is 12 The reduction matrix becomes

	Cust 1	Cust 2	Cust 3	Cust 4	;
Driver A	4	2	0	3	
Driver B	0	2	1	3	
Driver C	2	1	3	0	
Driver D	0	0	3	2	

Answer is B where

Driver A gets Customer 3, Driver B gets Customer 1, Driver C gets Customer 4,

Driver D gets Customer 2.