

2007 Further Mathematics Trial Exam 1 Solutions Free download and print from www.itute.com Do not photocopy © Copyright 2007 itute.com

SECTION A Core: Data analysis

1	2	3	4	5	6	7	8	9	10	11	12	13
В	Е	В	Α	Α	В	Е	С	Е	Е	В	С	Α

SECTION B

Module 1: Number patterns and applications

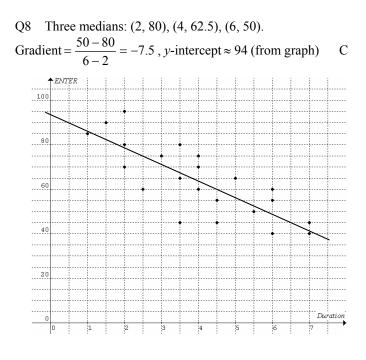
1	2	3	4	5	6	7	8	9
D	С	В	D	Α	Α	В	Α	В

Module 5: Networks and decision mathematics

1	2	3	4	5	6	7	8	9
С	Α	В	D	D	С	D	В	D

Module 6: Matrices

1	2	3	4	5	6	7	8	9
В	В	Α	Α	В	В	С	Α	В


SECTION A Core: Data analysis

Q1		В
Q2	Arrange data in ascending order:	

6813	15 20 21	23 24 27	28 40 41	
Mediar	$n = \frac{21+23}{2}$	- = 22		Ε

Q3 4 people less than 20, percentage = $\frac{4}{12} \times 100 \approx 33.3$ B

Q4 To be an outlier it must be $\leq Q_1 - 1.5 \times IQR = -6.25$ or $\geq Q_1 + 1.5 \times IQR = 47.75$.

Q9 E Note: C and D are undefined for x = 0.

Q10 No such residual plots exist if all calculations were done correctly.

Q11
$$X = \frac{11+27+23}{3} = 20.3$$
, $Y = 18$. B

Q12 Average =
$$\frac{1006 + 956 + 1210 + 1352}{4} = 1131$$

Second quarter seasonal index = $\frac{956}{1131} = 0.8453$ C

Q13 The deseasonalised figure for each quarter is the average of the four quarters, i.e. 1131.

SECTION B

Module 1: Number patterns and applications

Q1
$$t_1 = 0 = 1^2 - 1$$
; $t_2 = 3 = 2^2 - 1$; $t_3 = 8 = 3^2 - 1$;
 $t_4 = 15 = 4^2 - 1$; $t_5 = 24 = 5^2 - 1$;; $t_n = n^2 - 1$ D

Q2 It is an arithmetic sequence with a = -121, d = 4. $t_n = a + (n-1)d$, 43 = -121 + (n-1)4, n = 42 C

Q3 Look at the sequence in reverse order. a = 43, d = -4, $t_n > 0$, 43 + (n-1)(-4) > 0, $\therefore n < 11.75$, i.e. n = 11 B

Q4 Any rung is 99.9% (i.e. 0.999) of its preceding rung. Infinite geometric series with a = 1 and r = 0.999.

$$S_{\infty} = \frac{a}{1-r} = \frac{1}{1-0.999} = \frac{1}{0.001} = 1000$$
 D

Q5
$$t_n = 3t_{n-1} + 1$$
, $\therefore t_6 = 3t_5 + 1 = 3(-2) + 1 = -5$ and
 $t_5 = 3t_4 + 1$, i.e. $-2 = 3t_4 + 1$, $\therefore t_4 = -1$ A

Q7
$$\frac{t_n}{t_{n-1}} = \frac{3/4}{2/3} = \frac{9}{8}, \therefore 8t_n = 9t_{n-1}$$
 B

Q9
$$1+2+3+5+8+13+21+34+55+89=231$$
 B
 $\int_{10^{\text{th}} \text{ year}}^{10^{\text{th}} \text{ year}}$

Module 5: Networks and decision mathematics

Q1 A bipartite graph is a graph whose vertices can be divided into two disjoint sets such that every edge connects a vertex in one set and a vertex in the other set. There is no edge between two vertices in the same set.

Q2 A simple graph is an unweighted, undirected graph containing no graph loops or multiple edges. A

Q3 B
$$V - E + F = 8 - 12 + 6 = 2$$

Q4 *WYVXZW* is both a Hamiltonian circuit and an Euler circuit.

An Euler circuit is an Euler path that starts and ends on the same vertex. A Hamiltonian circuit can be converted to a Hamiltonian path by removing one of its edges. A Hamiltonian circuit is not a Hamiltonian path.

Q6

$$A \ B \ C \ D$$

 $A \ \begin{bmatrix} 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ D \ \begin{bmatrix} 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 \end{bmatrix}$
C
C

Q7 Maximum flow = minimum cut = 4 + 1 + 2 = 7 D

- Q8 The critical path *ADEFI* gives the shortest time. 9+5+0+3+6=23
- Q9 *A* from *X*, *B* from *Y*, *C* from *Z* and *D* from *W*. 1.15 + 0.80 + 1.45 + 0.90 = 4.30

Module 6: Matrices

Q1 X is 3×1 , \therefore Y is 1×2 so that XY is 3×2 consisting of 6 elements. B

Q2
$$x + 5 = 2 \times 2$$
, $x = -1$ B

А

А

Q4
$$X - Y = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}, \therefore (X - Y)^2 = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix},$$

$$\therefore (X - Y)^4 = ((X - Y)^2)^2 = \begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix} \begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix} \begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 8 & 8 \\ 8 & 8 \end{bmatrix} = 8 \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$
$$= 8(X - Y)$$
A

Q5 *P* is a singular matrix, $\therefore P^{-1}$ does not exist. B

Q6
$$\begin{bmatrix} 0.454 & 0.0284 \end{bmatrix} \begin{bmatrix} 10 & 18 \\ 12 & 5 \end{bmatrix} = \begin{bmatrix} 4.88 & 8.31 \end{bmatrix}$$
 B

Q7 A transitional matrix is a square matrix with positive elements and the elements in each column sum to 1.

$$Q8 \begin{bmatrix} 0.6 & 0.5\\ 0.4 & 0.5 \end{bmatrix} \begin{bmatrix} 400\\ 600 \end{bmatrix} = \begin{bmatrix} 540\\ 460 \end{bmatrix}$$
A

Q9
$$\begin{bmatrix} 0.6 & 0.5 \\ 0.4 & 0.5 \end{bmatrix}^{12} \begin{bmatrix} 400 \\ 600 \end{bmatrix} \approx \begin{bmatrix} 556 \\ 444 \end{bmatrix}$$
 B

Please inform mathline@itute.com re conceptual, mathematical and/or typing errors

В

D