

2009 Further Mathematics Trial Exam 1 Solutions

Free download and print from www.itute.com © Copyright itute.com 2009

SECTION A			C	ore: l	Data	anal	ysis						
	1	2	3	4	5	6	7	8	9	10	11	12	13
(С	В	D	В	Α	D	D	С	А	С	С	Е	Α

SECTION B

Module 1: Number patterns and applications

3

 E
 A
 D
 A
 C
 C
 E

 Module 5: Networks and decision mathematics

4

				-					
1	2	3	4	5	6	7	8	9	
D	Е	D	Α	С	С	В	Е	D	
Module 6: Matrices									

5

6

7

8

Е

9

С

í									
	1	2	3	4	5	6	7	8	9
	С	Α	С	D	Е	D	Α	D	С

SECTION A Core: Data analysis

Q1 The interval 160 -164 has the highest frequency. C

Q2 By inspection 164 cm cannot be the mean of the right side of the back-to-back stemplot. \therefore the right side must be the data of male students. The mean is 157.8 cm. B

Q3 Mean height =
$$\frac{164 \times 42 + 158 \times 32}{74}$$
 = 161.4 cm. D

Q4 A back-to-back stemplot is used to display the relationship between a numerical variable (height) and a two-valued categorical variable (gender). B

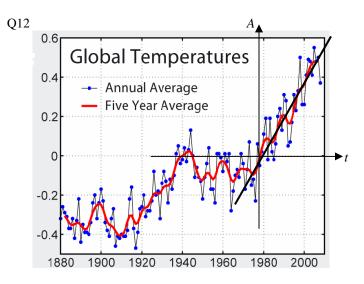
Q5 25% in the interval 15-23 mm, less than 25% in the interval 35-52 mm. A

Q6 Number of fish greater than 35 mm is 80. There are 4 outliers greater than 35 mm.

Percentage =
$$\frac{4}{80} \times 100\% = 5\%$$
. D

Q7 The mean is 250 and the standard deviation is about 50. The interval 200-400 is from $\mu - \sigma$ to $\mu + 3\sigma$ approximately.

Percentage
$$\approx \frac{68\%}{2} + 50\% = 84\%$$
. D


Q8 105 is about
$$3\sigma$$
 below $\mu \ldots z \approx -3$. C

Q9
$$\frac{s_Y}{s_X} = \frac{b}{r}$$
, $r = 0.80$ (given), $b = 1.2$ (gradient).
 $\frac{s_{(\log y)}}{s_x} = \frac{1.2}{0.80} = 1.5$. A

2009 Further Maths Trial Exam 1 Solutions

Q10 C

Q11 Sum $\approx -0.05 + 0.01 + 0.11 + 0.19 - 0.02 + 0.19 = 0.43$. C

Gradient of trend line ≈ 0.019 , vertical axis intercept ≈ -0.04 . E

Q13 A

SECTION B Module 1: Number patterns and applications

Q1 There is no common ratio in each of the four series. E

Q2 Consider 71.5 and 67 as the first and second terms of the sequence. $\therefore a = 71.5$, d = 67 - 71.5 = -4.5.

$$S_{108} = \frac{108}{2} \left(2 \times 71.5 + (108 - 1) \times 4.5 \right) = -18279 .$$

The sum of the middle 54 terms = $\frac{1}{2} \times 18279 = 9139.5$. A

Q3 Common difference: $\frac{1}{a} - \frac{1}{2} = \frac{1}{4} - \frac{1}{a}$, $\therefore \frac{2}{a} = \frac{3}{4}$,

$$\therefore a = \frac{8}{3}$$
. I

Q4 By inspection, $t_{n+1} = t_n + 4n$. A

Q5 Given $t_4 = 25$, $t_5 = 25 + 4 \times 4 = 41$, ..., $t_9 = 145$, $t_{10} = 145 + 4 \times 9 = 181$. The tenth pattern has 181 ten-cent coins valued at \$18.10. C

Note: The choices in the question have the decimal point incorrectly placed. A. 14.50, B. 15.30, C. 18.10, D. 22.10, E. 22.50.

Q6 11001.10011001..... = 10000 + 1001.10011001.....
= 10000 + 1001 + 0.1001 + 0.00001001 + 0.000000001001 +
= 10000 +
$$\frac{1001}{1 - 0.0001}$$
. $\therefore a = 1001$. C

© Copyright itute.com 2009

1

Q7 Common ratio
$$=\frac{t_2}{t_1} = \frac{-30}{45} = -\frac{2}{3}, \therefore \frac{t_{n+1}}{t_n} = -\frac{2}{3}$$

 $\therefore 3t_{n+1} + 2t_n = 0.$ E

Q8 Use $u_{n+1} = a + bu_n$ and 20 and 10 to set up equation (1) 10 = a + 20b. Use $u_{n+1} = a + bu_n$ and 10 and 25 to set up equation (2) 25 = a + 10b. Solve the 2 equations simultaneously to obtain a = 40 and b = -1.5.

Q9 Third bounce distance = 98 cm. Third fall distance = 98 + 5 = 103 cm. Total distance for the third fall and bounce = 103 + 98 = 201 cm. Total distance for the second fall and bounce = 108 + 103 = 211 cm. Total distance for the first fall and bounce = 113 + 108 = 221 cm.

$$a = 221, d = -10, S_{18} = \frac{18}{2} (2 \times 221 + (18 - 1) \times 10) = 2448.$$
 C

Module 5: Networks and decision mathematics Q1 D

Q2 E

Q3 Euler's formula: v - e + f = 2. *f* is an even number. \therefore either both *v* and *e* are even numbers or both *v* and *e* are odd numbers. D

Q4 A

Q5 An Euler path is a path that includes every edge just once. A Hamiltonian path is a path that passes through each vertex just once, and the starting vertex is different from the finishing vertex. C

Q6 A spanning tree is a subgraph and a tree containing all the vertices of the graph. There are 8 vertices in the graph. \therefore exactly 7 edges. C

Q7 Maximum flow from P to Q = minimum cut = 60. Maximum flow from R to Q = 20 + 20 + 10 = 50. Minimum flow from R to Q = 20 + 20 + 0 = 40. Difference = 50 - 40 = 10. B

Q8 E

Q9 One-step dominance matrix:

Two-step dominanace matrix:

 $\begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 \end{bmatrix}^{2} = \begin{bmatrix} 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 1 \\ 2 & 3 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 1 & 2 & 1 & 0 & 0 \end{bmatrix}$

Sum of missing entries =
$$3 + 0 = 3$$
. D

2009 Further Maths Trial Exam 1 Solutions

Module 6: Matrices

Q1 The order of product
$$x \begin{bmatrix} 0 & 1 & 0 \\ 2 & 0 & 1 \\ 1 & 1 & 1 \\ 0 & 1 & 2 \end{bmatrix}$$
 must be the same as that of $\begin{bmatrix} 3 & 2 & 1 \\ 1 & 0 & 4 \end{bmatrix}$, i.e. 2×3. $\begin{bmatrix} 0 & 1 & 0 \\ 2 & 0 & 1 \\ 1 & 1 & 1 \\ 0 & 1 & 2 \end{bmatrix}$ has an order of 4×3, $\therefore X$ must have

an order of 2×4. C

Q2
$$\begin{bmatrix} a & 2\\ \frac{1}{2} & 1 \end{bmatrix} \begin{bmatrix} -2 & 1\\ 1 & b \end{bmatrix} = \begin{bmatrix} -2a+2 & a+2b\\ 0 & \frac{1}{2}+b \end{bmatrix} = \begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix}$$
.
 $\therefore -2a+2=1$ and $\frac{1}{2}+b=1$.
 $\therefore a = \frac{1}{2}$ and $b = \frac{1}{2}$. A

Q3
$$\begin{bmatrix} -1 & -2 \\ 3 & 1 \end{bmatrix}^{-1} = \begin{bmatrix} \frac{1}{5} & \frac{2}{5} \\ -\frac{3}{5} & -\frac{1}{5} \end{bmatrix}$$
. $\therefore X = \begin{bmatrix} -6 & -2 \\ -2 & 1 \end{bmatrix} \begin{bmatrix} \frac{1}{5} & \frac{2}{5} \\ -\frac{3}{5} & -\frac{1}{5} \end{bmatrix} = \begin{bmatrix} 0 & -2 \\ -1 & -1 \end{bmatrix}$. C

Q4 D

Q5 A transition matrix (i) is a square matrix, (ii) has no negative elements, and (iii) the sum of elements in each column must be 1. E

Q6 D

Q7
$$[a \ b \ c] = \begin{bmatrix} 2 & -3 & 1 \end{bmatrix} \begin{bmatrix} -1 & 2 & 1 \\ 1 & -5 & -3 \\ 1 & 0 & 2 \end{bmatrix}^{-1} = \begin{bmatrix} 0 & 0.6 & 1.4 \end{bmatrix}$$
. A

Q8 Apply the transition matrix repeatedly:

 $\begin{bmatrix} 3500\\ 2800\\ 3800\\ 2500 \end{bmatrix} \rightarrow \begin{bmatrix} 2966\\ 2500 \end{bmatrix} \rightarrow \begin{bmatrix} 3095\\ 2005 \end{bmatrix} \rightarrow \dots \dots$

% change in the first transition $\frac{2966 - 2800}{2800} \times 100\% = 5.9\%$. % change in the next transition $\frac{3095 - 2966}{2966} \times 100\% = 4.3\%$.

D

Q9 For large enough
$$n$$
,
$$\begin{bmatrix} 0.88 & 0.02 & 0.04 & 0.01 \\ 0.05 & 0.92 & 0.05 & 0.01 \\ 0.03 & 0.03 & 0.85 & 0.01 \\ 0.04 & 0.03 & 0.06 & 0.97 \end{bmatrix}^{n} \begin{bmatrix} 3500 \\ 2800 \\ 2500 \end{bmatrix} \rightarrow \begin{bmatrix} 7193 \\ 7193 \end{bmatrix}^{n}$$
% of 12600 customers $\frac{7193}{12600} \times 100\% \approx 57\%$. C

Please inform mathline@itute.com re conceptual, mathematical and/or typing errors