MAV Trial Examination Paper 2009 Further Mathematics Examination 2 – SOLUTIONS

Core: Data Analysis

Question 1 a. Stem Leaf 7 4 8 2 5 8 9 2 6 7 8 10 1 5 7 4 = 74 cm 0 11 Correct stem and Correct leaf [A1] Legend included [A1]

b. For shape: Supermarket tomatoes are normally distributed (or symmetrically distributed) whilst Allen's have a negatively skewed distribution. [A1]
 For spread: Allen's tomatoes have a wider spread of weights – both in range and IQR. [A1]

Question 2

	The y-intercept is near 5 cm	[A1]
	A reasonable attempt to balance the points on either side of the line.	[A1]
b.	<i>Y</i> -intercept given as approximately 5.	[A1]
	Gradient, with workings, is in the range of 4 to 5.	
	For example using the points $(0, 5)$ & $(3, 20)$	
	m = (20 - 5)	
	$m = \frac{1}{(3 - 0)}$	
	15	[M1]
	- 3	
	= 5	
	Gives $y = 5x + 5$	
	States the equation using the variables names correctly ie.	
	Plant height = 5 x weeks + 5	[A1]
c.	Positive means that as the weeks pass (or weeks increase) the plant will grow taller (heilincreases) accordingly.	ght [A1]
d.	Obviously not linear. So as the variable pant height has to be transformed use a v^2	

transformation that is (Plant Height)².

MAV 2009 Further Mathematics Trial Examination 2 - SOLUTIONS

Question 3 a. The sum of indices of all four seasons is 4, therefore the missing index is 0.98. 0.90 + 0.98 + 1.14 + x = 4x = 4 - 3.92[A1] = 0.98Spring Summer Autumn Winter 0.90 1.14 0.98 0.98 [A1] **b.** The initial height of the plant when first planted. [A1] c. For every season that passes (time period) the plant will grow 0.1 metres in height. [A1]

TOTAL 15 marks

END OF CORE SOLUTIONS

Module 1: Number Patterns

Question 1 a. $6+1.5 = 7.5 \,\mathrm{m}$ [A1] b. $t_2 - t_1 = 4.5 - 3 = 1.5$ $t_3 - t_2 = 6 - 4.5 = 1.5$ since $t_2 - t_1 = t_3 - t_2 = 1.5$ then the sequence is arithmetic [A1[c. using $S_n = \frac{n}{2} [2a + (n-1)d]$ where n = 10, a = 3, d = 1.5 $S_{10} = \frac{10}{2} [2 \times 3 + (10 - 1)1.5]$

$$= 5 [6+9 \times 1.5] = 97.5$$
 [A1]

d. To find *n* when $S_n \ge 120$

Enter the general rule in the calculator to generate the sum sequence and then scroll down until the sum first exceeds 120. Read the value of n

MAV 2009 Further Mathematics Trial Examination 2 - SOLUTIONS

Answer: n=12Tammy will be eligible after 12 lessons

Question 2

a. $20 \times 0.08 = 1.6$, 20 - 1.6 = 18.4OR decrease by 8% means r = 1 - 0.08 = 0.92therefore during the second lesson a student makes an average of $20 \times 0.92 = 18.4$ errors. 18.4 errors [A1]

b.

$$E_{n+1} = a \times E_n$$

$$E_2 = a \times E_1$$

$$18.4 = a \times 20$$

$$\therefore a = \frac{23}{25} = 0.92$$

[A1]

c. Find *n* when $E_n = 3$

Method 1: Using the calculator

Enter the difference equation $E_{n+1} = 0.92E_n$, $E_1 = 20$ in the calculator to generate the error sequence and scroll where the error first becomes less than 4.

Less than 4 errors would have been made in the 21^{st} lesson.

[A1]

Method 2: Using algebra

Solve the general rule for a geometric sequence

$$a \times r^{(n-1)} < 4$$

20×0.92^{*n*-1} < 4

this point you may enter the inequation in the calculator and solve or continue algebraically

$$0.92^{n-1} < \frac{4}{20}$$

 $n-1 > \frac{\log(0.2)}{\log(0.92)}$
 $n-1 > 19.30$
 $n > 20.30$
∴ $n = 21$

💙 Edit Action Intera	ctive 🔀
▝▝▋▋▞▌Ϸ▕▓▓⋥▐▟▓⊘▼┍╉╱▎▝	• >
solve(20.0.92 ⁿ⁻¹ <4,r (n>20.30207	n) 7312}
[mth[abc]cat]2D] πθi∞()),≱ χy	↓ ▼ 1311
≠<>≤≥+78	9^=
<u> " # ∠ n - 4 5</u>	6 × ÷
an bn cn 12	3 + -
+1 +2 rSlv∭0 .	e ans
TRIG CALC 🕁 VA	AR EXE
Alg Decimal Real R	ad 💷

d.
$$S_n = \frac{a(1-r^n)}{1-r}$$
, where $a = 20$ and $r = 0.92$
$$= \frac{20(1-0.92^n)}{1-0.92} \text{ or } \frac{20(1-0.92^n)}{0.08} \text{ or } 250(1-0.92^n)$$
[A1]

e.

 $S_{28} - S_{23}$ $= \frac{250(1 - 0.92^{28})}{1 - 0.92} - \frac{250(1 - 0.92^{23})}{1 - 0.92}$ = 225.79 - 213.267 = 12.5 = 13 errors

🖤 Edit G	raph 🔶		×
๗๙๗	¤lm∷ E‡	∃ £‡∞ ‡an	>
an+1=0.92 n 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 4	2. an an 6.2239 5.7259 5.2678 4.8464 4.4587 4.102 3.7738 3.4719 3.1942 2.9386 2.7035 2.4872 2.9386 2.10521 1.9368	Σan 178.42 184.15 189.41 198.72 202.82 206.6 210.07 213.26 216.2 218.9 221.39 221.39 223.68 225.78 227.72	
225.7897	555594		Ŧ
Rad Real		(III	1

Question 3

a. Enter the difference equation in the calculator $M_4 = 4191$

Alternatively, using algebra

$$M_2 = 1.06 \times M_1 - 180$$

 $= 1.06 \times 4000 - 180$
 $= 4060$
 $M_3 = 1.06 \times M_2 - 180$
 $= 1.06 \times 4060 - 180$
 $= 4123.6$
 $M_4 = 1.06 \times M_3 - 180$
 $= 1.06 \times 4123.6 - 180$
 $= 4191$

Ame Ame Ame Recursive Explicit Ban+1=1.06-an-180 a1=4000 □bn+1:0 c1=0 an+1=1.06-an-180 n an+1=1.06-an-180 n 4000 2 4060 3 4123.6 4 4191 5 4262.4	😻 Edit Graph 🔶 🔀
Recursive Explicit ⊠an+1=1.06·an-180 a1=4000 □bn+1:0 b1=0 □cn+1:0 c1=0 an+1=1.06·an-180 n an 1 4000 2 4060 3 4123.6 4 4191 5 4262.4	ィᢣ/ᡪᡛᠠᡘᢁ᠉᠍ᡦᠯᡗᢄᢆᡜᡭ᠉
[™] a _{n+1} =1.06·a _n -180 ^{a₁=4000 ^{b₁=0 ^{b₁=0 ^{c₁=0 ^{c₁=0 ^{a_n-180 ⁿ ^{a_n} ¹ ⁴⁰⁰⁰ ² ⁴⁰⁰⁰ ³ ⁴¹⁹¹ ⁵ ^{4262.4} ¹}}}}}}	Recursive Explicit
□b _{n+1} : □ b ₁ =0 □c _{n+1} : □ c ₁ =0 a _{n+1} =1.06·a _n -180 <u>n a_n</u> 1 4000 2 4060 3 4123.6 4 4191 5 4262.4 ↓	⊠an+1=1.06•an-180 a1=4000
□ c _{n+1} =1.06·a _n -180 _1=0 a _{n+1} =1.06·a _n -180 _1 4000 2 4060 3 4123.6 4 4191 5 4262.4	Dbn+1: 0
ci=0 a _{n+1} =1.06·a _n -180 n a _n 1 4000 2 4060 3 4123.6 4 4191 5 4262.4 ↓	
a _{n+1} =1.06·a _n -180 n an 2 4000 3 4123.6 4 4191 5 4262.4 ↓	C1=0
a _{n+1} =1.06·a _n -180 n a _n 2 4060 3 4123.6 4 4191 5 4262.4 ↓	
1 4000 2 4060 3 4123.6 4 4191 5 4262.4 ↓	an+1=1.06•an−180 ≜
2 4050 3 4123.6 4 4191 5 4262.4 √	
4 4191 5 4262.4	2 4060 3 4123.6
	4 4191 5 4262.4
4191.016	4191.016
Rad Real 📶	

[A1]

[A1]

[M1]

b. $M_2 - M_1 = 4060 - 4000 = 60$ and $M_3 - M_2 = 4123.6 - 4060 = 63.6$ $M_2 - M_1 \neq M_3 - M_2$ therefore the sequence is not arithmetic.

$$\frac{M_2}{M_1} = \frac{4060}{4000} = 1.015 \text{ and } \frac{M_3}{M_2} = \frac{4123.6}{4060} = 1.016$$
$$\frac{M_2}{M_1} \neq \frac{M_3}{M_2} \text{ therefore the sequence is not geometric.}$$
Both must be shown [A1]

c. If $M_{n+1} = M_n = 4000$ then $M_{n+1} = x \times M_n - 180$ $4000 = x \times 4000 - 180$ 4180 = 4000x $x = \frac{4180}{4000} = 1.045$

A 4.5% increase

Alternatively increase by the amount that is removed,

$$x = \frac{180}{4000} \times \frac{100}{1} \% = 4.5\%$$
 [A1]

d.

Enter the difference equation in the calculator $S_4 = 4474$

Alternatively, using algebra

$$S_3 = 1.10 \times S_2 - 0.12S_1 - 80$$

 $= 1.10 \times 4840 - 0.12 \times 4800 - 80$
 $= 4668$

$$\begin{split} S_4 &= 1.10 \times S_3 - 0.12S_2 - 80 \\ &= 1.10 \times 4668 - 0.12 \times 4840 - 80 \\ &= 4474 \end{split}$$

💙 Edit Graph 🔶	×
ᆏᆉᅏᄬᇔᇏᇒ	ň
Recursive Explicit	
⊠a _{n+2} =1.1·a _{n+1} =0.12·a _n -: a ₁ =4800 a ₂ =4840 □b ₁ =0 b ₁ =0 b ₂ =0 □c _{n+2} : □ c ₁ =0	
an+2=1.1 · an+1=0.12 · an-80 n an 1 4800 2 4840 3 4668 4 4474 5 4281.2	
1	
4474	I t
Rad Real 🗧	•

e. Enter both difference equations in the calculator to find when $M_n > S_n$

This occurs in the sixth month ie. When n = 6 or June 2009

[A1]

Total 15 Marks

END OF MODULE 1 SOLUTIONS

Module 2: Geometry and Trigonometry

Question 1

a. The angle at the centre of a regular polygon is given by $\frac{360}{n}$ where *n* is the number of sides.

Therefore
$$\frac{360}{5} = 72^{\circ}$$
 [M1]

i. ATB is an isosceles triangle. Therefore AT=BT=2.55

and
$$= \angle TAB = \angle TBA = \frac{180^{\circ} - 72^{\circ}}{2} = 54^{\circ}$$

Using Cosine rule

$$AB^{2} = 2.55^{2} + 2.55^{2} - 2 \times 2.55 \times 2.55 \cos 72^{\circ}$$

= 8.986
$$AB = \sqrt{8.986} = 3 \text{ m}$$

or

or

b.

b.

Using the Sine rule

$$\frac{AB}{\sin 72^{\circ}} = \frac{2.55}{\sin 54^{\circ}}$$

$$AB = \frac{2.55}{\sin 54^{\circ}} \times \sin 72^{\circ} = 3 \text{ m}$$
[M1]

Using Trig Ratios
$$\sin 36^{\circ} = \frac{1}{2} \frac{AB}{2.55}$$

$$\frac{1}{2}AB = 2.55 \times \sin 36^{\circ}$$

$$AB = 2 \times 2.55 \sin 36^{\circ} = 3m$$
A
$$A = \frac{54^{\circ}}{\frac{1}{2}AB}$$
[A1]

i. set up ratio
$$AD : AT$$

$$11 : 51$$

$$x : 2.55$$

$$51x = 11 \times 2.55$$

$$x = \frac{11 \times 2.55}{51}$$

Therefore AD = 0.55 m

[A1]

x = 0.55

72

2.55 m

$$= 1.902 \text{ m}^2$$
 [A1]

Question 2

a.

c.

$$\angle RBQ = 58^{\circ} + (360 - 318)^{\circ}$$

= 58^{\circ} + 42^{\circ} [M1]
= 100^{\circ}

b. Angle at R is $\angle BRQ = 90 - 58 = 32^{\circ}$ Using the sine rule

$$\frac{QB}{\sin 32^{\circ}} = \frac{12}{\sin 100^{\circ}}$$
$$QB = \frac{12}{\sin 100^{\circ}} \times \sin 32^{\circ}$$
$$= 6.5 \text{ m}$$
[M1]

c. The direct distance from B to the riverbank creates a right angle.

B is 4.83 m to the riverbank and 27.38 m to the opposite side of the riverbank This means that the river is 27.38 - 4.83 = 22.55 m.

[A1]

Total 15 Marks

END OF MODULE 2 SOLUTIONS

d.

ii.

Module 3: Graphs and Relations

Question 1

a.
$$R = 55n$$
 [A1]
b. i. $C = 240 + 5n$ [A1]
ii. To break even
 $R = C$
 $55n = 240 + 5n$
 $50n = 240$
 $n = \frac{240}{50}$
 $n = 4.8$
 $5 \text{ teams to break even}$ [A1]
c.
Profit = Revenue - Cost
 $= 55n - (240 + 5n)$
 $= 50n - 240$
If the Profit = \$910 then
 $50n - 240 = 910$
 $50n = 1150$
 $n = \frac{1150}{50} = 23$
 23 teams [A1]
Question 2

[A1] The soccer competitors need to be able to run 100m in 18 seconds or less. a.

b.

[A3]

c. The competitor must satisfy the inequality $2y - 2.4x \ge 3$ where y=14

	🖤 Edit Action Interactive 🔀
$2y - 2.4x \ge 3$	▝▙▋▞▞▖▓▓▞▌▓▓▓▓▎▌▎▞▋▖▎》
$2 \times 14 - 2.4x \ge 3$	solve(28-2.4•x≥3,x) {x≤10.41666667}
$28 - 2.4x \ge 3$	
$-2.4x \ge -25$	
r < -25	L
$^{-2.4}$	mth abc cat 2D XII
$x \le 10.42$ seconds	πθ i @(), ><i>xyzt</i>+
	"#14n-456×÷
	an bn cn 123+-
	+1 +2 rSlv 80 • Ε a∩s
	nig Decimai Real Raci 🛄

The minimum time is 10.42 seconds

d. To determine whether (6, 23) satisfies all inequalities substitute x=6 and y=23. Inequality 1; $x \le 18$ is true since x = 6Inequality 2: $y \ge 12$ is true since y = 23Inequality 3: $2y - 2.4x \ge 3$ is true since $2 \times 23 - 2.4 \times 6 = 31.6 \ge 3$ Inequality 4: $y - 4x \ge 0$ is not true since $23 - 4 \times 6 = -1 < 0$ Therefore Zoe is in the state squad but is not in the elite squad

[A1]

Question 3

b. Using the rule
$$F = 700S^{-1}$$
 or $F = \frac{700}{S}$
substituting S = 195 gives $F = \frac{700}{195} = 3.60 [A1]
c. Using the rule $F = 700S^{-1}$ or $F = \frac{700}{S}$
substituting F = 4 gives
 $4 = \frac{700}{S}$
 $S = \frac{700}{4}$
= 175 spectators

[A1]

Total 15 Marks

END OF MODULE 3 SOLUTIONS

Module 4: Business related mathematics

Question 1 a. $110\% \rightarrow 3800 + x$ $100\% \rightarrow x$ $\frac{110\%}{100\%} = \frac{3800 + x}{x}$ $x = (3800 + x) \times \left(\frac{100}{110}\right)$ [A1] $11x = 38\,000 + 10x$ $x = $38\,000$ **b.** Cost price = \$33 000 Deposit = \$3000Balance = $$30\,000$ Hire purchase loan (simple interest) $I = \frac{\Pr T}{\Gamma}$ 100 $=\frac{30\,000\times3\times3}{}$ [M1] 100 =\$2700 Monthly = $\frac{(2700 + 30\,000)}{}$ 36 [A1] = \$908.33 c.

Effective rate
$$= \frac{2n}{n+1} \times \text{flat rate}$$

= $\frac{72}{37} \times 3\%$ [A1]
= 5.84% p.a.

d.

Stamp Duty =
$$\frac{33\,000}{200} \times 5$$

= 165 × 5 [A1]
= \$825

Question 2

a. Because effectively the 3% simple interest rate is higher (effective rate of 5.84%) than the compound rate of 5%. [A1]

$$A = PR^{n}$$
= 33 000 × 1.004116666³⁶
= \$38 328.58 [A1]
Equal mthly instal. = $\frac{38 328}{36}$
= \$1064.68

Question 3 a.

$$BV = P \left(1 - \frac{r}{100}\right)^n$$
[M1]

$$8000 = 33\,000 \times \left(1 - \frac{r}{100}\right)^5$$

Or show the table of values similar to those on a finance solver.

The reducing balance rate of depreciation is 24.7%

b. After 2 yrs

bookvalue =
$$33\,000 \times (1 - \frac{24.7}{100})^2$$

Use the finance solver on a graphics calculator to evaluate.

[A1]

c. Dist. Travelled= 80 000 kms
Depreciation = \$33 000 - \$8000 [A1]
= \$25 000 for 80 000 kms
= x for 100kms

$$x = 25\,000 \times \frac{100}{80\,000}$$

= \$31.25/100kms [A1]

Question 4

Use finance solver as this is an example of an annuity where there is a regular payment with a compound interest.

Six years of scholarships before the funds run out.

[A1]

Total 15 Marks

END OF MODULE 4 SOLUTIONS

Question 1 a. 1100 1000 400 1600 Res 606 Reg city 100 800 600 [A1] [A1] **b.** Using count back method 2100 max flow [A1] 2100 megalitres [A1] c. **Question 2** [A1] **a.** 9 weeks **b.** C, F, G, H, J [A1] **c.** A - float time 1.5 weeks [A1] D - float time 1.5 weeks [A1] **Ouestion 3 a.** Euler Path – odd vertices. \therefore D & E [A1] **b.** The main criteria for an Euler path is the need to use each edge once only. Starting position is not specific so either D or E is appropriate. [A1] **c.** D - C - A - B - D - E - F - G - B - E or D-C-A-B-D-E-B-G-F-E[A1] **d.** $D \rightarrow E$ All vertices would then be even. [A1] e. Hamiltonian Path is the most appropriate path because he needs to pass through each worksite exactly once. [A1] He has no need to start and finish at the same worksite; therefore it needn't be a circuit. [A1] He doesn't need to travel each road, therefore not Euler. [A1]

Total 15 Marks

END OF MODULE 5 SOLUTIONS

Module 6: Matrices

Questi	on 1											
a.												
	$\frac{1}{2} \begin{bmatrix} 3200\\ 2800\\ 2400 \end{bmatrix}$	 2600 2400 2100) 1700) 1600) 1400	$\begin{bmatrix} 1400\\1300\\1200 \end{bmatrix} = \begin{bmatrix} \\ \end{bmatrix}$	1600 1400 1200	1300 1200 1050	850 800 700	700 650 600			[A1]
b.												
	0.9	0	0	0]								
	0	0.8	0	0								
	0	0	0.6	0 \							[[A1]
	0	0	0	0.5								
c.												
	[3200	2600	1700	1400	0	0		0	2880	2080	1020	700
	2800	2400	1600	$\begin{bmatrix} 1400\\ 1200 \end{bmatrix} 0$	0.8	8 0		0	2500	1020	060	650
	2800	2400	1000		0	0.	6	$0 \mid =$	2520	1920	900	050
	2400	2100	1400		0	0		0.5	2160	1680	840	600
	Use a gr	aphics ca	alculator	to evaluate.							[A1]
d.	The elen	nent's po	osition is	row 2, colun	nn 3 or	$e_{2,3}$ for	a disco	ounted j	price of	\$960.	[A1]

Question 2 a.

2x + 5y + 10z = 44000 4y + 5z = 220003x + 4y + z = 27500

All three correct Only 2 correct (1 mark)

b.

$$\begin{bmatrix} 2 & 5 & 10 \\ 0 & 4 & 5 \\ 3 & 4 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 44000 \\ 22000 \\ 27500 \end{bmatrix}$$

$$A \quad X = B$$

$$X = A^{-1}B$$
[M1]

[A2]

* TEXAS INSTRUMENTS TI-83 Plus [2 5 10] [0 4 5] [3 4 1]] [A]-1[B] [4500] [3000] [2000]]
--

4500 3000 2000 Stateroom \$4500 Balcony \$3000 Inner Cabin \$2000

Student needs to interpret each of the elements of the solution appropriately. [A1]

Question 3

a.

$$\begin{bmatrix}
9/10 & \frac{1}{5} & \frac{1}{10} \\
8/100 & \frac{7}{10} & \frac{3}{10} \\
2/100 & \frac{1}{10} & \frac{6}{10}
\end{bmatrix}
or
\begin{bmatrix}
0.9 & 0.2 & 0.1 \\
0.08 & 0.7 & 0.3 \\
0.02 & 0.1 & 0.6
\end{bmatrix}$$
b.

$$H_{2008} = \begin{bmatrix} 50\ 000\\ 100\ 000\\ 150\ 000 \end{bmatrix}$$
[A1]

$$T \times H_{2008} = \begin{bmatrix} 0.9 & 0.2 & 0.1 \\ 0.08 & 0.7 & 0.3 \\ 0.02 & 0.1 & 0.6 \end{bmatrix} \begin{bmatrix} 50 & 000 \\ 100 & 000 \\ 150 & 000 \end{bmatrix}$$
$$= \begin{bmatrix} 80 & 000 \\ 119 & 000 \\ 101 & 000 \end{bmatrix}$$
Cruise
Tour
Resort
Texas INSTRUMENTS TI-83 Plus
[. 02 . 1 . 6]]
[. 02 . 1 . 6]]
[. 02 . 1 . 6]]
[. 02 . 1 . 6]]
[. 03 . 7 . 3]]
[. 02 . 1 . 6]]
[. 03 . 7 . 3]]
[. 02 . 1 . 6]]
[. 03 . 7 . 3]]
[. 02 . 1 . 6]]
[. 03 . 7 . 3]]
[. 02 . 1 . 6]]
[. 03 . 7 . 3]]
[. 04 . 1 . 6]]
[. 05 . 7 . 3]]
[. 05 . 1 . 6]]
[. 06 . 7 . 3]]
[. 06 . 1 . 6]]

80 000 for cruise, 119 000 for tours and 101 000 for resort

[A1]

Setting *n* to a large number say 50. Showing the next transition eg n=51 [A1] [A1]

Total 15 Marks

END OF EXAMINATION 2 SOLUTIONS