2010 Further Mathematics Trial Exam 2 Solutions Free download from www.itute.com © Copyright 2010 itute.com

Core - Data analysis

Q1a

Subject	Number				
English	10				
Literature	2				
Chinese	4				
Indonesian	2				
Legal	3				
Accounting	3				
Music	2				
Psychology	2				
Biology	3				
Chemistry	4				
Physics	4				
Further Maths	4				
Specialist Maths	2				
Math Methods	6				

Q1b Students who have chosen Chemistry or Math Methods or both are B, C, D, E, G and I, i.e. 6 out of 10 students.

 $\frac{6}{10} \times 100\% = 60\%$

Q1c If 'Number' stands for the number of times that a subject is chosen, then it is a frequency distribution table. If it stands for the number of students choosing a subject, then it is not.

Q2a 50 is the lower quartile (25th percentile) for Mathematics. .: 75% of 24 = 18 students pass the test.

Q2b 6 students fail English and 6 students fail Mathematics. It is possible that the same 6 students fail both subjects. .: maximum 6 students failing both subjects.

Q2c English 25%

Q2d For Mathematics the marks are negatively skewed, .: the mean is on the left of the median. For Science the marks are positively skewed and the mean is on the right of the median. .: Mathematics and Science have approximately the same class average.

Q3a

<u>2</u> ³ ^u					
2	3	4	5	6	7
675	710	805	950	900	850
662	730	822	885	900	902

$$\frac{675 + 710 + 805}{3} = 730, \ \frac{950 + 900 + 850}{3} = 900$$

Q3b The 3-year moving average increases with time, i.e. shows an uptrend.

Q3c Number of workers = $40 \times \text{year} + 617$

Q3d Number of workers = $40 \times 11 + 617 = 1057$

Q4a Lower quartile = 45, upper quartile = 65 .: interquartile range = 65 45 = 20 (20%)

Q4b

<u> </u>									
t	0	0	0.5	1	1.5	1.5	1.5	2	2.5
R	85	95	90	65	45	60	65	70	50
Log ₁₀ R	1.93	1.98	1.95	1.81	1.65	1.78	1.81	1.85	1.70

t	2.5	3	3	3.5	4	4.5	4.5	5	5.5
R	55	40	50	35	50	40	45	40	45
Log ₁₀ R	1.74	1.60	1.70	1.54	1.70	1.60	1.65	1.60	1.74

$$\log_{10} R = -0.058t + 1.889$$

Q4c
$$r^2 = 0.588 \approx 59\%$$

1

Module 2: Geometry and trigonometry

Q1a Split the cross-section:

Triangle:

$$s = \frac{\sqrt{2} + 1.75 + 1.25}{2} = 2.207$$

$$Area = \sqrt{s(s - \sqrt{2})(s - 1.75)(s - 1.25)} = 0.875$$
Also, $area = \frac{1}{2} \times base \times height$, $\frac{1}{2} \times 1.75 \times h = 0.875$, $h = 1$
Rectangle:
$$Area = 2.25 \times 1 = 2.25$$

 $Total = 0.875 + 2.25 = 3.125 \text{ m}^2$

Q1b *Volume* = $3.125 \times 15 = 46.875 \text{ m}^3$

Q1c Dimension scale factor $=\frac{6}{4}=1.5$.: cross-sectional area $=1.5^2 \times 3.125 = 7.03125$ m²

 $Volume = 7.03125 \times 15 \approx 105.469 \text{ m}^3$

Q2a
$$\tan \theta = \frac{6.8 - 5.6}{7.2}, \ \theta = \tan^{-1} \left(\frac{6.8 - 5.6}{7.2} \right) = 9.46^{\circ}$$

Q2b

Let *x* be the horizontal distance of the end of the shadow from the pole.

$$\frac{x}{7.2+x} = \frac{2}{6.8}$$
, $\therefore x = 3$ m

Q2c Let ℓ be the length of the shadow.

Using the same method in finding \overline{CA} , $\overline{AB} = \sqrt{8}$ and $\overline{BC} = \sqrt{24}$.

The cosine rule: $\cos \angle BAC = \frac{(\sqrt{12})^2 + (\sqrt{8})^2 - (\sqrt{24})^2}{2\sqrt{12}\sqrt{8}} = \frac{-1}{\sqrt{24}}$.: $\angle BAC = \cos^{-1}\left(\frac{-1}{\sqrt{24}}\right) = 101.8^\circ$

Q3c $\overline{PQ} > \overline{AB}$, $\overline{QR} > \overline{BC}$ and $\overline{RP} > \overline{CA}$.: area of $\Delta PQR >$ area of ΔABC .

Module 3: Graphs and relations

Q1a Read from graph, cost = \$1.80

Q1b Sending the documents in two letters, 500 g and 100 g. Cost = 3.00 + 1.20 = \$4.20

Q1c

$$C = \begin{cases} 1.20, & 0 < w \le 125 \\ 1.80, & 125 < w \le 250 \\ 3.00, & 250 < w \le 500 \end{cases}$$

Q2a 12 hours 25 minutes after 1:30 am, i.e. 1:55 pm.

Q2b Read from graph: About 8.2 hours in the first period and 8.8 hours in the second period. Total = 8.2 + 8.8 = 17 hours.

Q2c The steepest negative gradient of the graph is at t = 15.5 hours. Draw a tangent to the graph at t = 15.5. Gradient of the tangent $= \frac{7.5 - 3.5}{3} \approx 1.3$

Fastest rate of decrease ≈ 1.3 metres per hour.

Q3a

Q3b *I* against d^{-2} is a straight line through the origin. $\therefore I \propto d^{-2}$

The constant of proportionality is the gradient of the line = $\frac{0.413}{0.413} = 0.5$

$$=\frac{1}{0.826}=0.$$

: $I=0.5d^{-2}$

Q4b The whole number values of x and y that maximise F = 3x + 5y are on the line segment 3x + 5y = 30 in the feasible region.

x = 5 and y = 3 or x = 10 and y = 0

Module 4: Business-related mathematics

Q1a Discount = 18.95 - 13.00 = 5.95% discount = $\frac{5.95}{18.95} \times 100\% \approx 31\%$

Q1b Let x be the discounted price without GST. .: discounted price including 10% GST = 1.1x = 13.00.: x = 11.82GST = 13.00 - 11.82 = \$1.18

Q2a Total amount = $10\% \times 1200 + 63 \times 24 = \1632 Interest = 1632 - 1200 = \$432Amount borrowed = $1200 - 10\% \times 1200 = \1080 Flat rate of interest = $\frac{432}{1080 \times 2} = 0.20 = 20\%$ pa

Q2b Effective interest rate
$$=\frac{2n}{n+1} \times flat rate$$

 $=\frac{2 \times 24}{24+1} \times 20\% = 38.4\%$

Q2c Total amount $=10\% \times 1200 + 29 \times 52 = 1628 Interest =1628 - 1200 = \$428Principal = \$1080

Flat rate of interest $=\frac{428}{1080 \times 2} = 0.198148 = 19.8148\%$ pa Effective interest rate $=\frac{2 \times 52}{52 + 1} \times 19.8148\% = 38.8819\%$ Extra interest paid effectively after 2 years $= 1080 \times 38.8819\% \times 2 - 1080 \times 38.4\% \times 2 = \10.41 Q3a Brisbane has the highest CPI. .: highest inflation.

Q3bi There was an increase of 3.1% from June 2009 to June 2010.

:: 103.1% of June quarter 2009 CPI = June quarter 2010 CPI, i.e. $103.1\% \times x = 172.1$, where x is the June quarter 2009 CPI.

$$\therefore x = \frac{172.1}{103.1\%} = 166.9$$

Q3bii Let *r* be the quarterly constant rate.

$$R = 1 + \frac{r}{100}$$

100.0×R⁸⁰ = 172.1, R⁸⁰ = 1.721, R = 1.0068,
$$\frac{r}{100} = 0.0068, r = 0.68$$

Q4a 12000×10=\$120000

Q4b TVM Solver: N = 10 I% = 7.5PV = PMT = -12000 FV = 0 P/Y = 1 C/Y = 1

Amount of initial investment = PV = \$82369

Q4c The initial investment PV must generate an annual interest of \$12000 to cover the \$12000 annuity.

$$PV = \frac{12000}{7.5\%} = \$160000$$

.: the minimum amount is \$160000.

Please inform mathline@itute.com re conceptual, mathematical and/or typing errors