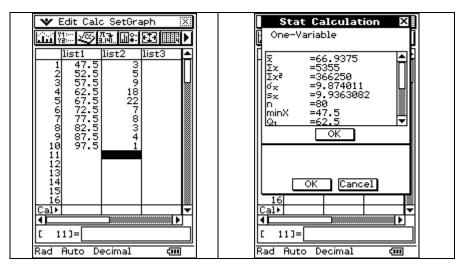
The Mathematical Association of Victoria

FURTHER MATHEMATICS 2012

Trial Written Examination 1-SOLUTIONS

SECTION A: CoreData analysis Answers:									
1.	D	2.	D	3.	С	4.	D	5.	А
6.	В	7.	D	8.	В	9.	А	10.	А
11.	D	12.	С	13.	А				
	CTION B: M dule 1: Num								
1.	В	2.	E	3.	А	4.	С	5.	С
6.	А	7.	С	8.	Е	9.	С		
Moo	dule 2: Geor	netry	and trigon	ometi	·y				
1.	С	2.	С	3.	D	4.	А	5.	В
6.	А	7.	С	8.	В	9.	В		
Moo	dule 3: Grap	ohs a	nd relations						
1.	С	2.	E	3.	В	4.	А	5.	В
6.	D	7.	С	8.	D	9.	В		
Moo	dule 4: Busi	ness-	related matl	hema	tics				
1.	D	2.	E	3.	В	4.	С	5.	D
6.	В	7.	В	8.	В	9.	С		
Moo	dule 5: Netw	orks	and decisio	n ma	thematics				
1.	D	2.	D	3.	В	4.	В	5.	С
6.	С	7.	В	8.	В	9.	Е		
Moo	dule 6: Mati	rices							
1.	D	2.	D	3.	C	4.	В	5.	E
6.	E	7.	А	8.	А	9.	С		

Worked solutions--Core: Data analysis


Question 1

Eight people have a heart rate over 80, so $\frac{8}{80} \times 100 = 10\%$ are at risk.

Answer D

Question 2

Entering the middle heart rate value of each class interval and the corresponding frequency

will give a mean value of 66.9

Answer D

Question 3

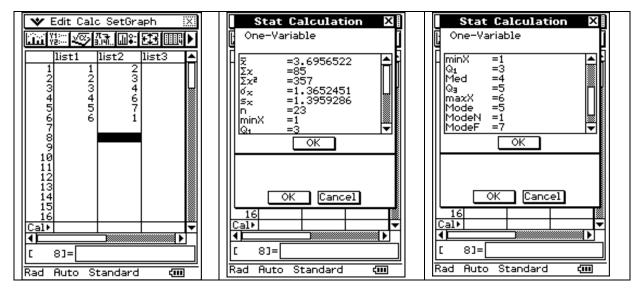
Parallel boxplots are used to display bivariate data where one set is categorical and the other is numerical.

Options A, B and E are incorrect – these refer to two categories.

Options D is incorrect – this refers to two numerical data.

Option A is incorrect because $\overline{x} - 3s = 64 - 3 \times 12 = 28$ means that 0.15% of the population of students will score less than 28.

Option B is incorrect because $\overline{x} - s = 64 - 12 = 52$ means that 16% of the population of students will score less than 52.

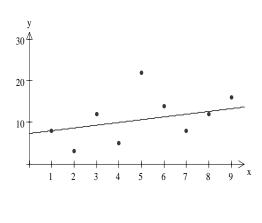

Option C is incorrect because $\overline{x} + 2s = 64 + 2 \times 12 = 88$ means that 2.5% of the population of students will score more than 88.

Option D is **correct** because $\overline{x} - 2s = 40$ and $\overline{x} + s = 78$ means that half of 95% plus half of 68% of the population of students scored between 40 and 76. That is 47.5 + 34 = 81.5% (more than 80%) lie between 40 and 76.

Option E is incorrect because 99.7% of scores lie in the interval between $\overline{x} - 3s$ and $\overline{x} + 3s$, which in this case is between 28 and 100.

Answer D

Question 5


Mean is 3.7, Median is 4 and mode is 5 so the order from lowest to highest is mean, median, mode.

Answer A

Question 6

The gradient of the line is $m = \frac{10}{4} = 2.5$, so the interpretation of the gradient on the graph is: For every hour worked \$2.50 is earned.

The three median line shown on the graph passes above the left and right median points and has a positive y-intercept which is less than 10. It appears to pass through one data point on the scatterplot, not one – third of the points. The median point will always pass through the average point of the three median points, that is through the point

$$\left(\frac{x_L + x_M + x_R}{3}, \frac{y_L + y_M + y_R}{3}\right)$$

Answer D

Question 8

The IQR is 35.7 - 24.3 = 11.4 so option A is correct Upper Boundary $= 35.7 + 1.5 \times 11.4 = 52.8$ so option B is **incorrect** 75% if the data lie above the lower Quartile of 24.3 so option C is correct The median lies anywhere between the two quartiles 24.3 and 35.7 so option D is correct Lower Boundary $= 24.3 - 1.5 \times 11.4 = 7.2$ so option E is correct

Answer B

Question 9

Option A is false because $r^2 = 0.757$ so $r = -\sqrt{0.757} = -0.87$ (see graph for direction - negative) Option B is true because there is a negative gradient Option C is true because $m = -0.8 = \frac{-8}{10}$, so for every increase in 10 minutes of talking, text time decreases by 8 minutes Option D is true because $y = -0.8 \times 100 + 166.4 = 86.4$ so residual = 60 - 86.4 = -26.4

Option E is correct interpretation of coefficient of determination.

Answer A

Question 10

To linearise the data, stretch the *x* scale by applying an x^2 transformation or stretch the *y* scale by applying a y^2 transformation

Answer A

2012 MAV FURTHER MATHEMATICS EXAM 1-SOLUTIONS

Deer	0.1	Maller (America)	Madian and and
Day	Sales	Median (4 point)	Median centred
Monday	23		
Tuesday	32		
Wednesday	18		
		Median (32, 18, 34, 40) is	
		33	
Thursday	34		$\frac{33+37}{2} = 35$
		Median (18, 34, 40, 48) is	
		37	
Friday	40		
Saturday	48		
Sunday	33		

Question 11

Question 12

The sum of the seasonal indices is equal to the number of seasons. x + 0.83 + y + 1.06 = 4

Hence the sum of the seasonal indices for summer and winter is 4 - 1.89 = 2.11

Option A	0.83 + 1.06 = 1.89
Option B	1.06 + 0.83 = 1.89
Option C	0.83 + 1.28 = 2.11
Option D	1.06 + 1.28 = 2.34
Option E	1.28 + 1.06 = 1.34

Answer C

Answer D

Question 13

Given that $a = \overline{y} - b\overline{x}$ and $b = r\frac{s_y}{s_x}$ will give the y-intercept and gradient of the least squares regression line y = a + bx and a = 148, $\overline{x} = 21$, $s_x = 4$, b = 3.5 and r = 0.7685Substituting in $a = \overline{y} - b\overline{x}$ gives $148 = \overline{y} - 3.5 \times 21$ so $\overline{y} = 148 + 74.5 = 221.5$ Substituting in $b = r\frac{s_y}{s_x}$ gives $3.5 = 0.7685 \times \frac{s_y}{4}$ so $s_y = \frac{3.5 \times 4}{0.7685} = 18.22$

Answer A

Module 1: Number patterns

Question 1

$$t_1 = -20$$
, $t_2 = -20 \times -1.5 = 30$, $t_3 = -20 \times (-1.5)^2 = -45$
so the difference between 30 and -45 is 75

Question 2

The worm population is increasing by the same amount therefore the sequence is arithmetic

$$t_6 = 85$$

so a + 5d = 85 (equation 1)

$$t_{15} = 184$$

so a + 14d = 184 (equation 2)

equation 2 – equation 1 9d = 99

d = 11

sub in equation 1 $a+5\times11=85$ so a=30

Question 3

Substitute n = 2 in $t_{n+1} = 2t_n - 1$ $t_3 = 2t_2 - 1$ since $t_3 = 9$ $9 = 2 \times t_2 - 1$ so $t_2 = 5$

 $t_2 = 2k - 1$ 5 = 2k - 1k = 3

*	Edit	: Act	ion	Inte	era	ctiv	/e	X
다.5 il	ക►	∫d×− ∫d×4	£3,0	▼ ≁	÷	•		≽
16	-5d= -14d	85 =184	,	d a=3	0,0	j=1	1)	
(mth	jab	cíci	at)	2D			ŧ)	Ţ
πθ	11	»(>,	Þ	<u>ע א</u>	Z	t	•
	٠J		「「	7	8	9	Ĺ	
2 2	e.	109.0	I∎I	4	5	6	×	÷
$\overline{\Omega}$	$\overline{\Omega}$	1	£∎,⊒	1	4	3	+	
	CT CT			TN	۰ ۷۲	E AR	_	ns KE
	<u> </u>			_	_		_	

Answer E

Answer A

© The Mathematical Association of Victoria, 2012

If a = 3 and b = 0 then $B_{n+1} = 3B_n$, where $B_1 = 1$ generates the sequence 1, 3, 9, 27, ... This is a geometric sequence (not arithmetic).

If a = 3 and b = 1 then $B_{n+1} = 3B_n + 1$, where $B_1 = 1$ generates the sequence 1, 4, 13, 40, This sequence is neither arithmetic nor geometric.

If a = 1 and b = 3 then $B_{n+1} = B_n + 3$, where $B_1 = 1$ generates the sequence 1, 4, 7, 10, ... This sequence is arithmetic

Answer C

Question 5

The arithmetic sequence is given by a, a + d, a + 2d, a + 3d, a + 4d

$$S_1 = a = 3$$

 $S_2 = 2a + d = 11$
 $S_3 = 3a + 3d = 24$ etc
 $d = S_2 - 2S_1$
 $= 11 - 2 \times 3$
 $= 5$

so the original sequence is 3, 8, 13, 18, 23 where d = 5

Answer C

Question 6

From the graph it is observed that the sum of an even number of terms (S_2, S_4, S_6) is less than the sum of an odd number of terms (S_1, S_2, S_3) which must mean that every second term of the original sequence is a negative number. The sequence must be geometric with the first term a positive number and the common ratio a negative number. So options A and D are possible answers.

Since the difference between each sum is getting smaller then the original sequence must be converging to zero so -1 < r < 0

Answer A

Question /							
For the sequence	For the sequence	For the sequence					
2, 5, 8,	-20, -13, -6,	0.2, 0.3, 0.45,					
$t_n > 100$	<i>t</i> _n >100	<i>t_n</i> > 100					
a + (n-1)d > 100	a + (n-1)d > 100	$ar^{n-1} > 100$					
2 + (n-1)(3) > 100	-20 + (n-1)(7) > 100	$0.2(1.5)^{n-1} > 100$					
using solve on CAS gives	using solve on CAS gives	using solve on CAS gives					
$n > 33\frac{2}{3}$	<i>n</i> > 18.14	<i>n</i> >16.327					
3	ie when n = 19	ie when $n = 17$					
when $n = 34$							
For the sequence	For the sequence						
99, 99.05, 99.1,	0.5, -0.6, 0.72,						
<i>t_n</i> > 100	<i>t</i> _n >100						
a + (n-1)d > 100	$ar^{n-1} > 100$						
99 + (n-1)(0.05) > 100	$0.5(-1.2)^{n-1} > 100$						
using solve on CAS gives	generate sequence and scroll						
<i>n</i> > 20	when $n = 31$						
ie when n = 21							

Question '	7
------------	---

For a Fibonacci sequence	Also	Also
$f_6 + f_7 = f_8$	$f_7 + f_8 = f_9$	$f_5 + f_6 = f_7$
$b+f_7=a$	$a-b+a=f_9$	$f_5 + b = a - b$
$f_7 = a - b$ option A is true	$2a - b = f_9$ option B is true	$f_5 = a - 2b$ option C is true
$f_6 + f_7 = f_8$	$f_4 + f_5 = f_6$	
$f_6 + f_7 = a$ option D is true	$f_6 + f_7 = b$	
	so option E is not true	

Answer E

Question 9

Diameter is *increasing* by 0.8 of previous increase where the first increase is a=6

The series generated is $6+6 \times (0.8) + 6 \times (0.8)^2 + 6 \times (0.8)^3 + \dots$

So maximum increase is given by $S_{\infty} = \frac{a}{1-r} = \frac{6}{1-0.8} = 30$

Maximum diameter is 15 + 30 = 45 cm

Module 2: Geometry and trigonometry

Question 1

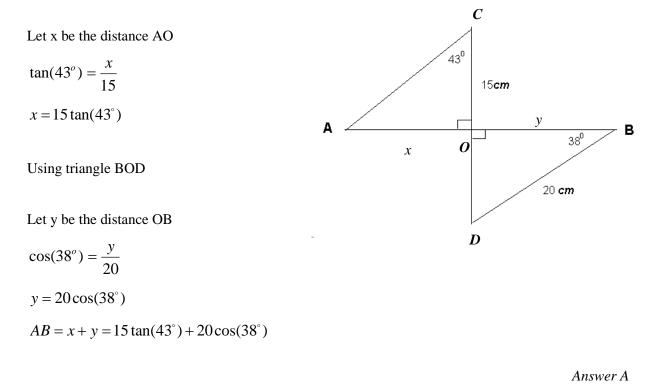
$$2x^{\circ} + 58^{\circ} = 180^{\circ}$$
$$x = 61^{\circ}$$

Answer C

Question 2

The interior angles of a regular polygon with n sides is given by $180 - \frac{360}{n}$

solving $180 - \frac{360}{n} = 140$ gives n = 9

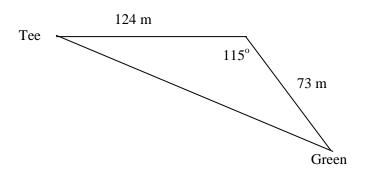

Answer C

Question 3

Inside the triangle: Using the opposite angle of 16° and the supplementary angle of 130° (50°) inside the triangle then $x = 50^{\circ} + 16^{\circ} = 66^{\circ}$

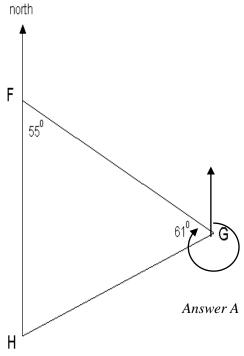
Answer D

Using triangle AOC



Question 5

Let x be the distance from the Tee to the Green


Using the cosine rule

$$x^{2} = 124^{2} + 73^{2} - 2(124)(73)\cos 115^{\circ}$$
$$x = \sqrt{124^{2} + 73^{2} - 2(124)(73)\cos 115^{\circ}}$$

Answer B

The bearing of F from G is more than 270° The bearing of G from F is less than 180° The bearing of G from H is less than 90° The bearing of H from G is more than 180° but less than 270° The bearing of H from F is 180°

Question 7

Volume ratio = 27:125

 $= 3^3: 5^3$

Length ratio = 3:5

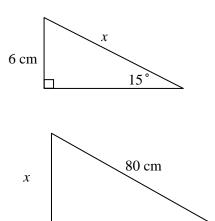
Area ratio = $3^2:5^2$

$$\times 10 \left(\begin{array}{c} = 9 : 25 \\ 90 : x \end{array} \right) \times 10$$

If area of smaller cone is 90 cm^2 then area of larger is 250 cm^2

Answer C

Question 8


Let x be the depth of the desk

$$\sin(15^\circ) = \frac{6}{x}$$
$$x = \frac{6}{\sin(15^\circ)} = 23.18$$

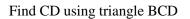
using Pythagoras' Theorem

$$length^2 + x^2 = 80^2$$

$$length = \sqrt{80^2 - 23.18^2} = 76.6$$

length

Method 1


Find BD using triangle ABD

Angle ABD = $180^{\circ} - 35^{\circ} = 145^{\circ}$

Angle ADB = $180^{\circ} - 145^{\circ} - 28^{\circ} = 7^{\circ}$

 $\frac{200}{\sin(7^\circ)} = \frac{BD}{\sin(28^\circ)}$

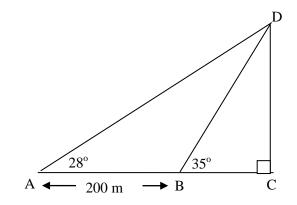
$$BD = \frac{200\sin(28^\circ)}{\sin(7^\circ)} = 770.45$$

$$\sin(35^\circ) = \frac{CD}{770.45}$$

 $CD = 770.45 \sin(35^{\circ}) = 441.9 \,\mathrm{m}$

Method 2

Using triangle ACD


Let BC = x and let the height = CD = y

 $\tan\left(28^\circ\right) = \frac{y}{200+x} \qquad \text{equation 1}$

Using triangle BCD

 $\tan(35^\circ) = \frac{y}{x}$ equation 2

solving on the calculator gives height = 441.9 m

*	Edi	it Ac	sti	on	Inte	era	cti	ve	X
다.5 년 4월 2	ტ∙	, jej×- jej×+	γŀ	(43) (43)	•/	ŧЧ	•		≽
ta	an (2	28)=	2	у 00+	z				Î
PS		35)=				χ,γ			
{x= 0	631	.11	62	2096	,y⁼	=44	1.1	91.	
									₹
[mth	n∫at	οcΥ	ca	it)	2D	ÌZ	10	t)	Ŧ
πθ) i	00),	۶	ر ۲	Ż	t	٠
	ł J			/二	7	8	9		Ξ
<mark>∠</mark> ■	l e	109	Έ	<u>v —</u> I∎I	4	5	6	×	÷
ĥ	1				1	2	3	+	ĿĮ
	18	214 -	5 li	(8;8	0	•	Е	ar	ns
\underline{n}	<u> </u>			<u> </u>	<u> </u>			_	_
CAL	ॉ	AD\	7	ÓР	ŤΝ	V	AR	E	×Ε

Module 3: Graphs and relations

Question 1

45 litres of petrol was used over 8 days. Average Rate $=\frac{45}{8}=5.6$ litres per day

Answer C

Question 2

3x - 4y - 2 = 0 can be written as 4y = 3x - 2so $y = \frac{3x}{4} - \frac{2}{4}$

The line has a positive gradient of $\frac{3}{4}$ and a y-intercept of $-\frac{1}{2}$. So options A, B and C are not true

When x = 3, $y = \frac{3 \times 3}{4} - \frac{2}{4} = \frac{7}{4}$ so the line does not pass through (3, 2) When y = 0, $x = \frac{2}{3}$ so the x intercept is at $x = \frac{2}{3}$

For the line 6x - y - 4 = 0 (option E)

when y = 0, 6x - 4 = 0 \therefore $x = \frac{2}{3}$ so its x intercept is also at $x = \frac{2}{3}$

Answer E

Question 3

12m = 22.00m = \$1.15

Let $m = \cos t$ of a muesli bar; f = fruit strap 8m + 6f = 14.12 I 12m + 5f = 17.90 II $1.5 \times I$ 12m + 9f = 21.18 III or solve on calculator III – II 4f = 3.28 f = 0.82 substitute into II to find m. $12m + 5 \times 0.82 = 17.90$ 12m + 4.10 = 17.90

💙 Edit Action Inte	eractiv	/e 🔀
℡℥ⅈℨℙⅈ℁ℷ⅃ℰ℁ℐ▼≁	₩₹	
8m+6f=14.12 12m+5f=17.90 (m=1.15,		2}
		Ŧ
[mth]abc]cat]2D		۲Ŧ
$\pi \theta i \otimes \langle \rangle, \Rightarrow i$	x y z	t 🕈
	89	^=
	56	Χ÷
	23	<u> + -</u>]
(){}{ = { : ::::::::::::::::::::::::::::::::	• E	ans
CALC ADV OPTN	∙ ⊑ VAR	EXE

For three muesli bars and two fruit straps Zoe will pay 3(1.15) + 2(0.82) = \$5.09 and will receive \$4.90 change from \$10.00

The graph shown has the equation $y = \frac{k}{x^2}$ where k = gradient of the line

$$k = \frac{6}{2} = 3$$
 so the equation is $y = \frac{3}{x^2}$

Answer A

Answer B

Question 5

To break even Profit = 0. This can be read from the graph i.e. when n = 150

Question 6

From the graph shown the gradient can be found by the points (0, -1200) and (150, 0)

$$m = \frac{1200}{150} = 8$$
 y-intercept is -1200

Profit = 8n - 1200

The selling price is \$35 per T-Shirt so

Revenue = 35n

Profit = Revenue - Cost

Rearranging this gives

Cost = Revenue - ProfitCost = 35n - (8n - 1200)Cost = 27n + 1200

Answer D

Question 7

John's travel card was used over a 2.5 hour period so the charge is \$5. The 10 year old child used their travel card over a 2.5 hour period so the charge is also \$5. The 7 year old child used their travel card for exactly 2.5 hours so $2.5 \times 0.5 = 1.25 . Sarah's travel card was used over a 6.5 hour period so \$8 was charged.

Total charge = \$5 + \$5 + 1.25 + 8 = \$19.25

Taxi company A has a fixed charge of \$3 (y-intercept) and a rate of \$4 per kilometre (gradient) so C = 4x + 3 eliminate option A and E

Taxi company B has two charges based on the distance travelled.

- \$5 per kilometre is charged for the first 6 km so C = 5x, $0 \le x \le 6$ end point is (6, 30) and
- \$3 per kilometre is charged after the first 6 km

e.g If x = 10 then the first 6 km is charged \$5 each and the remaining 4 km is charged \$3 each. $C = 5 \times 6 + 3 \times 4 = 42$ (10, 42) If x = 15 then the first 6 km is charged \$5 each and the remaining 9 km is charged \$3 each $C = 5 \times 6 + 3 \times 9 = 57$ (15, 57) Using the two points (10, 42) and (15, 57) gives the linear equation C = 3x + 12

Generally, if x is greater than 6 km then the first 6 km is charged \$5 each and the remaining (x - 6) km is charged \$3 so

 $C = 5 \times 6 + (x - 6) \times 3$ = 30 + 3x - 18 = 3x + 12

Answer D

Question 9

The equation passing through (0, 1) and (-1, 0) is y = x + 1 and the equation passing through (0, 4) and (8, 0) is $y = -\frac{1}{2}x + 4$ The lines y = x + 1 and $y = -\frac{1}{2}x + 4$ intersect at the point B (2, 3) The extreme points of the feasible region are:

- A (0, 1) where the objective function $M = k \times 0 + 1 = 1$
- B (0, 4) where the objective function $M = k \times 0 + 4 = 4$
- C (2, 3) where the objective function $M = k \times 2 + 3 = 2k + 3$

For M to be a maximum at B

2k + 3 > 42k > 1 $k > \frac{1}{2}$

Module 4: Business-related mathematics

Question 1

Minimum monthly balance was brought forward from August into September \$326.36

Monthly interest on minimum balance is $\frac{3.4}{1200} \times \$326.26 = \$0.92$

Answer D

Question 2

The interest paid is \$8250 - \$6000 = \$2250

Let *T* be the time of the investment in years.

$$I = \frac{PRT}{100}$$

$$2250 = \frac{6000 \times 7.5 \times T}{100}$$

$$T = \frac{2250 \times 100}{6000 \times 7.5}$$
$$T = 5 \text{ years}$$
$$5 \times 12 = 60 \text{ months}$$

Question 3

Vickie's investment is determined using

$$A = PR^{n} \quad \text{where } R = \left(1 + \frac{10}{100}\right) = 1.1 \quad \text{and} \quad n = 3 \times 1 = 3$$
$$A = 1000 \times 1.1^{3}$$
$$I = 1000 \times 1.1^{3} - 1.000 = 331$$

Rob's investment is determined using

$$I = \frac{PRT}{100}$$
$$I = \frac{1000 \times 10 \times 3}{100} = 300$$

Vickie's interest exceeds Rob's by 331 - 300 = 31

Answer B

Answer E

10% of \$50 = \$5 so the charge per session is \$55 The only value listed that is exactly divisible by \$55 is \$1100

Question 5

Photocopier has depreciated by $\frac{500000 \times 12}{100} = 600000$ cents

Depreciated by \$6 000

Value = 9 400 - 6 000 = \$3 400

Answer D

Answer C

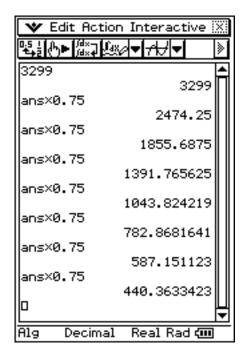
Question 6

The shirt is discounted at $\frac{8}{100} \times 150 = \12 and the jacket is discounted at $\frac{6}{100} \times 250 = \15

The total discount is 12 + 15 = 27 for a total marked price of 150 + 250 = 400

The percentage discount for the two items combined = $\frac{27}{400} \times 100 = 6.75\%$

Answer B

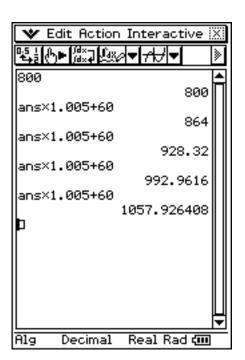

Question 7

Guilia's investment is determined using

 $A = PR^{n}$ where $R = \left(1 + \frac{7.2}{1200}\right) = 1.006$ and $n = 2 \times 12 = 24$ $A = 2000 \times 1.006^{24}$

A depreciation of 25% means that the television will retain 75% of its value

June 1	2011	\$3299
June 1	2012	\$3299 × 0.75 = \$2474.25
June 1	2013	$3299 \times 0.75^2 = 1855.69$
June 1	2014	$3299 \times 0.75^3 = 1391.77$
June 1	2015	$3299 \times 0.75^4 = 1043.82$
June 1	2016	$3299 \times 0.75^5 = 782.87$
June 1	2017	$3299 \times 0.75^6 = 587.15$
June 1	2018	$3299 \times 0.75^7 = 440.36$

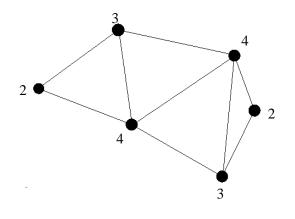

Answer B

Question 9

$$R = 1 + \frac{6}{1200} = 1.005$$

The amount of the investment at the end of:

April is $800 \times 1.005 + 60 = 864$ May is $864 \times 1.005 + 60 = 928.32$ June is $928.32 \times 1.005 + 60 = 992.96$ July is $928.32 \times 1.005 + 60 = 1057.93$

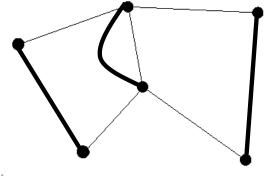

2012 MAV FURTHER MATHEMATICS EXAM 1-SOLUTIONS

Module 5: Networks and decision mathematics

Question 1

There are two vertices of degree 2 Two vertices of degree 4 and Two vertices of degree 3

So four are even and two are odd



Answer D

Question 2

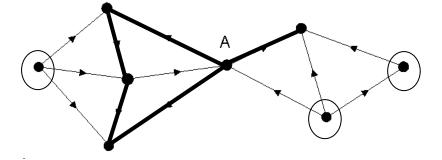
The degree of all vertices must be even on a connected graph for it to be an Eulerian circuit.

Adding the three paths as shown will create a graph with four vertices of degree two and two vertices of degree four hence satisfying the requirements of an Eulerian circuit.

Answer D

Question 3

The dominance matrix for the tournament is


	1	2	3	4			
2 3	0	1 0 0 1	1 0	0 1	This gives the dominance vector	2 1 1 2	so the final will be between Teams 1 and 4

An illustration of the relationship between two categorical variables: *player* and *position* on basketball court needs to be displayed. The only graph that is used for this purpose is a bipartite graph.

Answer B

Question 5

Three vertices (circled) cannot be reached from vertex A

Answer C

Question 6

For any connected planar graph v + f = e + 2. All graphs except C satisfy this relationship

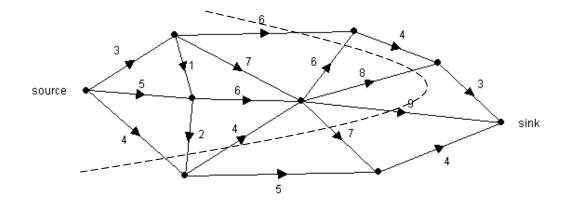
Graph	Edges	Faces	Vertices	$\mathbf{v} + \mathbf{f} - \mathbf{e} = 2$
A	5	4	3	4 + 3 - 5 = 2
В	7	5	4	5 + 4 - 7 = 2
С	10	10	5	10 + 5 - 10 = 5
D	11	7	6	6 + 7 - 11 = 2
E	13	8	7	7 + 8 - 13 = 2

Answer C

Question 7

A complete graph with five vertices has 4 + 3 + 2 + 1 = 10 edges to be a complete graph.

If the graph is already connected with the minimum number of edges then it already has 4 edges.


It will require an extra 6 edges to make it complete

The dominance matrix for the water polo competition is

$\begin{array}{ccccccc} A & B & C & D \\ A & 0 & 1 & 0 & 0 \\ B & 0 & 0 & 1 & 1 \\ C & 1 & 0 & 0 & 0 \\ D & 1 & 0 & 1 & 0 \end{array}$ The two step domination	the matrix is D^2	$= \begin{bmatrix} 0\\0\\1\\1\\1 \end{bmatrix}$	1 0 0	0 1 0 1	$\begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}^2$	$= \begin{bmatrix} 0\\2\\0\\1 \end{bmatrix}$	0 0 1 1	1 1 0 0	1 0 0 0]
This gives the two step dominance vector	2 3 1 2								

Answer B

Question 9

A maximum of seven edges.

Answer E

Module 6: Matrices

Question 1

Determinant

= ad - bc $= 2 \times 2 - 3 \times 3$ = 4 - 9= -5

Answer D

Answer D

Question 2

If CX = D

To solve for X then pre-multiply by the inverse of C

 $X = C^{-1}D$

Question 3

$$A \times B = AB$$

$$3 \times 4 \times m \times n = 3 \times 1$$

For the Matrix AB to exist the number of columns in matrix A must equal the number of rows in matrix B, therefore m = 4The resulting matrix has the same number of columns as B, therefore n = 1So B is a 4×1 matrix

The inverse of the matrix
$$\begin{bmatrix} 2 & 6\\ 1 & 4 \end{bmatrix}$$
 is
$$= \frac{1}{2 \times 4 - 6 \times 1} \begin{bmatrix} 4 & -6\\ -1 & 2 \end{bmatrix}$$
$$= \frac{1}{2} \begin{bmatrix} 4 & -6\\ -1 & 2 \end{bmatrix}$$
$$= \begin{bmatrix} 2 & -3\\ -\frac{1}{2} & 1 \end{bmatrix}$$

The only element not in the inverse matrix is 3

Answer B

Question 5

 A^{-1} will exist if the determinant does not equal zero

$$ad - bc \neq 0$$

 $xy-24\neq 0$

$$xy \neq 24$$

The product of x and y for all options listed, except E, give 24

Answer E

$$t_{1} - 2t_{2} = 0$$

$$t_{1} - 3a = 87$$
can be represented as
$$t_{1} + 0t_{2} - 3a = 87$$

$$t_{2} + 2a = 29$$

$$0t_{1} + t_{2} + 2a = 29$$

$$\begin{bmatrix} 1 & -2 & 0 \\ 1 & 0 & -3 \\ 0 & 1 & 2 \end{bmatrix} \begin{bmatrix} t_{1} \\ t_{2} \\ a \end{bmatrix} = \begin{bmatrix} 0 \\ 87 \\ 29 \end{bmatrix}$$

Question 7

The transition matrix $\begin{bmatrix} 0.6 & 0.2 \\ 0.4 & 0.8 \end{bmatrix}$ The steady state matrix is $\begin{bmatrix} 0.6 & 0.2 \\ 0.4 & 0.8 \end{bmatrix}^{50} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0.33333 \\ 0.66666 \end{bmatrix}$ Mario's Sienna's

Answer A

Question 8

The initial state does not have an affect on the long term outcome. The transition matrix dictates the final outcome so Mario's percentage of customers will be unaltered.

Answer A

Question 9

0.6	0.1	0.1	300		210	
0.2	0.8	0.3	200	=	250	
0.2	0.1	0.6	100		140	

Labour lost 90 votes, Liberal gained 50 votes and the other party gained 40 votes.

The total change in votes was 90 + 50 + 40 = 180 votes.