The Mathematical Association of Victoria

FURTHER MATHEMATICS 2013

Trial Written Examination 1--SOLUTIONS

SEC	CTION A: C	ORE	2Data anal	ysis					
Ans	wers:	•	D	2	D	4	Л	-	Ъ
1.	В	2.	D	3.	D	4.	В	5.	D
6.	Α	7.	А	8.	В	9.	Е	10.	D
11.	E	12.	D	13.	С				
SEC Mod	CTION B: M lule 1: Num	IODU ber H	ULES Patterns						
1.	А	2.	С	3.	Е	4.	D	5.	В
6.	D	7.	С	8.	А	9.	В		
Mod	lule 2: Geor	netrv	and trigon	ometr	·v				
1.	С	2.	C	3.	A	4.	Е	5.	E
6.	С	7.	В	8.	С	9.	В		
Mod	lule 3º Grar	nhs ai	nd relations						
1.	E	2.	E	3.	В	4.	В	5.	А
6.	А	7.	С	8.	Е	9.	D		
Mod	lule 4: Busi	ness-i	related matl	hemat	tics				
1.	B	2.	D	3.	A	4.	В	5.	С
6.	В	7.	А	8.	В	9.	В		
Mod	lule 5: Netw	orks	and decisio	n mat	thematics				
1.	D	2.	D	3.	В	4.	Е	5.	А
6.	А	7.	Е	8.	D	9.	С		
Mod	lule 6: Mati	ices							
1.	A	2.	А	3.	В	4.	А	5.	D
6.	В	7.	В	8.	А	9.	Е		

Worked solutions--Core: Data analysis

Question 1

 $\frac{11}{30} \times 100 = 36.6 \approx 37\%$

Question 2

Question 3

Outlier must lie above the upper boundary

Upper Boundary = $Q_3 + 1.5 \times IQR$ = 11+1.5×(11-5) = 20

Answer D

Question 4

Two categorical variables are being displayed.

Question 5

Answer B

The gradient is given by $m = \frac{rise}{run} = \frac{\text{change in weight}}{\text{change in height}} = \frac{2}{3} \text{ kg/cm}$

This means that as the height increases by 3 cm the weight increases by 2 kg

so if the height increases by 9 cm then the weight increases by 6 kg

Note:

Option C is false since it is extrapolation

Option D is false since a height of 185 cm gives a weight = $75\frac{1}{3}$ kg which is an under prediction Option E is false because the left median point of (155, 60) will not be altered

Answer A

Question 7

Since the relationship is negative $r = -\sqrt{0.81} = -0.9$

$$m = \frac{r \times S_y}{S_x} = \frac{-0.9 \times 3}{0.5} = -5.4$$

Answer A

Question 8

r = 0.7 The value of r measures the strength of the linear relationship.

This value suggests that there is a *positive* linear relationship between the weekly hours of study and the expenditure on energy drinks. So as the hours of study increase then so does the weekly expenditure.

Note:

Option D: "49% of the variation of *hours studied* is explained by the variation of expenditure on energy drinks" is incorrect because hours studied is the *independent variable* on this occasion.

Graph A can be potentially linearised by squaring the dependent variable Graph B can be potentially linearised by finding the reciprocal or logarithm of the dependent variable Graph C can be potentially linearised by finding the reciprocal or logarithm of the dependent variable

Answer D

Question 11

Residual = Actual ice-creams sold - Predicted ice-creams sold

-25 = 240 - Predicted ice-creams sold

Predicted ice-creams sold = 265

Substituting 265 ice-creams in the equation gives

 $265 = 0.2 \times \text{Max Daily Temperature}^2 + 10.2$

Max Daily Temp = 35.69

Answer E

Answer E

than one

Answer C

Thursday and Saturday have the same 3 point mean and 3 point median values of 33 and 37 respectively

Question 13

Question 12

The sum of the Autumn and Winter seasonal sales is 4 - 1.20 - 1.05 = 1.75So any combination of seasonal indices are possible as long as they add up to 1.75

Option A is false since either	one of Autumn or W	inter could potentially	have an S.I. greater than 1.20
1		1 5	\mathcal{U}

Option B is false since one season can have a S.I. below 0.75 then other will be greater then one

Option C is true because each of Autumn and Winter could have an S.I. = $\frac{1}{2} \times 1.75$

Option D is false since the S.I. of Summer = 1.20 is greater than that of spring = 1.05

Option E is false since one of the two seasons has a S.I. greater than one then the other must be less

© The Mathematical Association of Victoria, 2013

Answer D

Module 1: Number patterns

Question 1

 $d = t_2 - t_1 = -4 - -7 = -4 + 7$

Answer A

Question 2

	$t_2 - t_1 \neq t_3 - t_2$	$\frac{t_2}{t_2} = \frac{t_3}{t_3}$
For 7 0 7 0 07	$0.7 - 7 \neq 0.07 - 0.7$	$t_1 t_2$
1017,017,007,	- 6.3 ≠ -6.93	$\frac{0.7}{0.7} = \frac{0.07}{0.07} = 0.1$
	· · · · · ·	7 0.7
	is not arithmetic	is geometric
	$t_2 - t_1 = t_3 - t_2$	$\frac{t_2}{\neq} \neq \frac{t_3}{\neq}$
	-13.815.2	$t_1 t_2$
	= -12.413.8	$\frac{-13.8}{\neq} \frac{-12.4}{=}$
For -15.2, -13.8, -12.4,	= 1.4	-15.2 -13.8
	is arithmetic	69 _ 62
		$\overline{76} \neq \overline{69}$
		is not geometric
	$t_2 - t_1 \neq t_3 - t_2$	$\frac{t_2}{\neq} \neq \frac{t_3}{\neq}$
	1 1 1 1 1	$t_1 t_2$
1 1 1	$\overline{6}$ $\overline{4}$ $\overline{4}$ $\overline{8}$ $\overline{6}$	1.1.1.1
For $\frac{1}{4}, \frac{1}{6}, \frac{1}{8}, \dots$	$-\frac{1}{2} \neq -\frac{1}{2}$	$\frac{-}{6} \div \frac{-}{4} \neq \frac{-}{8} \div \frac{-}{6}$
	$-\frac{12}{12} \neq -\frac{12}{24}$	2 3
	is not arithmetic	$\frac{-}{3} \neq \frac{-}{4}$
		is not geometric
	$t_2 - t_1 \neq t_3 - t_2$	$\frac{t_2}{t_1} \neq \frac{t_3}{t_2}$
	$9 - 4 \neq 16 - 9$	$t_1 t_2$
For 4, 9, 16,	5≠7	9 16
	is not arithmetic	$\frac{-}{4} \neq \frac{-}{9}$
		is not geometric

The first sequence is geometric, the second is arithmetic and the last two are neither

Question 4

$$S_n = \frac{n}{2}(a+l)$$
$$S_n = \frac{20}{2}(14+71) = 850$$

Answer D

Equation 1	Equation 2	Solving the equations simultaneously gives
$t_5 = 29$	$S_8 = 248$	💙 Edit Action Interactive 🐹
a + 4d = 29	$\frac{8}{2}$ [2a + 7d] = 248	▝▙▖▌ᠿ▶▓፨⋥▐ؽૹਕ▼┮₽∕▝▖ 》
	$\frac{1}{2}$ [2 <i>u</i> + 7 <i>u</i>] = 248	∫a+4d=29 🛔
	8a + 28d = 248	8a+28d=248 a,d
		{a=45,d=-4}

Answer B

Question 6

Answer D

Question 7

$$T_{2} = 3T_{1} + b, \quad T_{1} = 4$$

$$T_{2} = 12 + b$$

$$T_{3} = 3T_{2} + b, \quad T_{3} = 48$$

$$48 = 3(12 + b) + b$$

$$48 = 36 + 3b + b$$

$$48 = 36 + 4b$$

$$b = 3$$

Reduction in x % means that this is a geometric sequence where $r = 1 - \frac{x}{100}$

Answer A

Question 9

Area is *increasing* by 0.2 of previous increase where the first increase is a = 12The series generated is $12 + 12 \times (0.2) + 12 \times (0.2)^2 + 12 \times (0.2)^3 + \dots$ So maximum increase is given by $S_{\infty} = \frac{a}{1-r} = \frac{12}{1-0.2} = 15$

Maximum area is $15 + 25 = 40 \text{ cm}^2$

Module 2: Geometry and trigonometry

Question 1

$$\frac{360^{\circ}}{8} = 45^{\circ}$$

Question 2

Answer C

Question 3

$$\sqrt{8 \times 1 \times 3 \times 4} = \sqrt{8(8-a)(8-b)(8-c)}$$

$$8-a = 1, \ 8-b = 3, \ 8-c = 4$$

$$a = 7, \ b = 5, \ c = 4$$

so the triangle has side lengths 7, 5 and 4

Answer A

Question 4

$$\cos x = \frac{3^2 + 4^2 - 6^2}{2 \times 3 \times 4}$$
$$= -\frac{11}{24}$$

Answer E

Using Pythagoras

$$x^{2} + x^{2} = 12^{2}$$
$$2x^{2} = 144$$
$$x = \sqrt{72}$$

Perimeter = $12 + 2 \times \sqrt{72} = 28.97$

Answer E

Question 6

Area of semi circle = $\frac{1}{2}\pi r^2 = \frac{1}{2}\pi \times 6^2 = 18\pi$ Area of triangle = $\frac{1}{2} \times \text{base} \times \text{height} = \frac{1}{2} \times \sqrt{72} \times \sqrt{72} = 36$ Area of unshaded region = $18\pi - 36$

Answer C

W (120)

Question 7

x = 135 m

Let x = horizontal distance

$$m = \frac{rise}{run} = \frac{90}{x} = \frac{2}{3}$$

90 m B (30)

using Pythagoras the direct distance

$$BW = \sqrt{90^2 + 135^2}$$

Using the right angle triangle where

height = 39 cm and a base length = d + 60 cm

$$\tan 5^\circ = \frac{39}{d+60}$$
$$d = \frac{39}{\tan 5^\circ} - 60$$

Answer C

Question 9

 $a + b = 3\cos 35^{\circ} + 7\sin 30^{\circ} = 3\cos 35^{\circ} + 7\cos 60^{\circ} = 3\sin 55^{\circ} + 7\sin 30^{\circ}$

Module 3: Graphs and relations

Question 1

Using the points (0, -2.5) and (3, 3.5)

$$m = \frac{3.5 - -2.5}{3 - 0} = \frac{6}{3} = 2$$

The y intercept is at -2.5 so the equation is y = 2x - 2.5

Doubling the equation gives 2y = 4x - 5 and rearranging gives 5 = 4x - 2y

Answer E

Question 2

V Edit Action Int	eractive 🔀
simplify(<u>2a-2b</u>) b-a)	
D	-2
mth [abc] cat] 2D	T T T T T
πθίω(),>	xyzt 🕈
	789^=
	156×÷
	23+-
(){}{={::::::::::::::::::::::::::::::::::).Elans
CALC ADV OPTN	VAR EXE
Alg Decimal Rev	al Deg 📶

$$m = \frac{rise}{run} = \frac{2a - 2b}{b - a}$$

Answer E

Rate of change represents the gradient between the two years

From the graph the rate of change between :

1987 to 1988 is approximately 0

1988 to 1990 is approximately $\frac{rise}{run} = \frac{-3200}{2} = -1600$

1990 to 1992 is approximately $\frac{rise}{run} = \frac{-800}{2} = -400$

1992 to 1996 is approximately $\frac{rise}{run} = \frac{-3600}{4} = -900$

1996 to 2000 is approximately $\frac{rise}{run} = \frac{-100}{4} = -25$

1 1 0 1 0 1 0 0 0

Question 4

Substituting the point
$$(\frac{1}{2}, 6)$$
 in the equation
 $y = 3x^n$ gives $6 = 3 \times (\frac{1}{2})^n$ and solve
 $solve \left[6 = 3 \cdot (\frac{1}{2})^{\infty}, x \right]$
 $\{x = -1\}$

Answer B

Question 5

The revenue equation is 5x + 4.50y = 355

When doubled it becomes 10x + 9y = 710

This is found in option A and C

The total number of sandwiches sold is given by the equation x + y = 75

This is found in options A B and D

<u>Method 1</u> When hired for 10 days the cost is $10 \times \$100 = \1000 Point (10, 1000) \$80 per day thereafter means that the gradient, m = 80substitute point and m = 80 into y = mx + c $1000 = 80 \times 10 + c$ c = 200Equation is y = 80x + 200

Method 2

Choose two days that are at least 10 e.g. (10, 1000) and when hired for 20 days then $Cost = 10 \times \$100 + 10 \times \$80 = \$1800$ so other point is (20, 1800)

 $m = \frac{1800 - 1000}{20 - 10} = 80$ substituting (10, 1000) in y = 80x + c gives c = 200Equation is y = 80x + 200

Answer A

Question 7

The passenger train travels for 300 km at 80 km/hr and stops at Springfield station for 45 min = 0.75 hours. The total time of the journey = $\frac{300}{80} + 0.75 = 4.5$ hours

If Springfield is 120 km from Melbourne then the passenger train travels 300 - 120 = 180 km to reach Springfield.

Given that the passenger train travels at 80 km/hr it will take $\frac{180}{80} = 2.25$ hours to reach Springfield and then wait for 45 minutes = 0.75 hours. So the passenger train is at Springfield when $2.25 \le t \le 3$ hours.

The Freight train must travel no faster than 120 km in 2.25 hours i.e. speed = $\frac{120}{2.25} = 53\frac{1}{3}$ km/h and no slower than 120 km in 3 hours is speed = $\frac{120}{3} = 40$ km/h

So the speed of the freight train, x , must be between 40 and $53\frac{1}{3}$ km/h to cross the passenger train at Springfield.

Answer E

Question 9

All values of x and y are positive so they follow the inequalities $x \ge 0$ and $y \ge 0$.

 $y \le 6 - x$ means that $x + y \le 6$. That is, the sum of the coordinates must be less that or equal to 6. All points follow this inequality.

 $y \ge \frac{1}{2}x$ means that the y value must be greater than half the x value. All but (4, 1) follow this inequality.

Point	$x + y \le 6$	$y \ge \frac{1}{2}x$	
(1,3) (1,5) (3,2) (4,1) (3,3)	1 + 3 = 4	$3 \ge 0.5$	True
	1 + 5 = 6	$5 \ge 0.5$	True
	3 + 2 = 5	$2 \ge 1.5$	True
	4 + 1 = 5	$1 \ge 2$	False
	3 + 3 = 6	$3 \ge 1.5$	True

Answer D

Module 4: Business-related mathematics

Question 1

8% of 150 = \$12 6% of 250 = \$15 Total discount = \$27 Percentage discount = $\frac{27}{400} \times 100 = 6.75\%$

Question 2

The value of the computer after three years = $4000 \times 0.85^3 = 2456.50$

The amount depreciated = 4000 - 2456.50 = \$1543.50

Answer D

Question 3

$$I = \frac{PRT}{100}$$

95 = $\frac{P \times 5.5 \times \frac{112}{365}}{100}$ solves to give \$5629.06

Answer A

Question 4

Finance Solver

N = 300I(%) = 6.5 PV = 250000Pmt = ?FV = 0PpY = 12CpY = 12

Solve for Payment to give \$1688.02

Answer B

\$1500 interest per quarter therefore \$6000 interest per annum.

$$I = \frac{PRT}{100}$$

6000 = $\frac{120000 \times R \times 1}{100}$

solving gives R = 5%

Question 6

Charge before GST is added is $85 + 140 \times 4$ 10% GST therefore this charge is multiplied by 1.1 Total amount charged is therefore $(85+140 \times 4) \times 1.1$

Question 7

$$R = 1 + \frac{r}{100}$$
 where *r* is the interest rate per month $= \frac{6.6}{12} = 0.55$
 $R = 1 + \frac{0.55}{100} = 1.0055$

Question 8

Depreciation of 12 cents in dollars = $\frac{12}{100}$

Depreciation per sheet = $\frac{12}{100 \times 1000}$

To find the total depreciation multiply by number of sheets :	$= \frac{3000000 \times 12}{2}$
To find the total depreciation multiply by number of sheets	100×1000
Initial value is $860 \pm depreciation = 860 \pm \frac{300000 \times 12}{100000 \times 12}$	
$\frac{100 \times 1000}{100 \times 1000}$	

Answer B

Answer C

Answer B

Answer A

Choose an amount to be invested e.g. \$1000

Account 1 value after x months is $1000 + \frac{1000 \times 7.5 \times x}{\frac{12}{100}}$

Account 2 value after x months is 1000×1.005833^{x}

💙 Edit T	-Fact Gr	aph 🔶 🛛 🔋
᠇ᡛᡰᡛ		:
 21 22 23 24 25 26 27 28 29 30	1125 1131.3 1137.5 1143.8 1150 1156.3 1162.5 1168.8 1175 1181.3 1187.5	y2 1123.4 1129.9 1136.5 1143.1 1149.8 1156.5 1163.3 1170.0 1176.9 1183.7 1190.6

Account 2 first exceeds Account 1 in month 25

Module 5: Networks and decision mathematics

Question 1

In a simple graph the sum of the degrees is equal to twice the number of edges.

Therefore, a simple graph with 8 edges will have 16 as the sum of the degrees of the vertices.

5

Question 2

For any connected planar graph v + f = e + 2.

Since v = f, 2f = e + 2 therefore e = 2f - 2

So the number of edges is equal to twice the number of regions (faces) minus two.

G is unreachable from any other vertex, but G can reach every other vertex.

Answer D

Answer D

Answer B

Question 4

Question 3

Answer E as it has 2 paths from A to C rather than from B to C

Answer E

Question 5

Answer A

Optimal allocation is found by taking the shortest time for each allocated task

Mowing – Nigel Trimming – Michael Planting – Oscar Mulching – Peter The task with the longest allocation time is Mowing with 35 minutes

Question 7

The minimum length of hose required to connect the tap to each sprinkler will be a minimum spanning tree.

Answer E

Answer A

Question 8

The earliest start time for activity I is the longest path from the start to I This will be path A-C-G that is 4+3+4=11 days

Answer D

Question 9

The earliest start time for activity D is 4 The latest start time is 17-10 = 7 (this is the length of the critical path minus length of path D-F-I) The slack time is the latest start time – earliest start time which equals 7-4=3

Module 6: Matrices

Question 1

For the Matrix AB to exist the number of columns in matrix A must equal the number of rows in matrix B. These values are not equal as demonstrated below

$$\begin{array}{ccc} A & \times & B \\ 2 \times 1 & \times & 2 \times 2 \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & &$$

Question 2

Only square matrices may be raised to a power. A is a 1×1 square matrix

Answer A

Answer B

Answer A

Answer A

Question 3

The inverse will not exist if the determinant is equal to zero

4y-2x=0 when x=4 and y=2

Question 4

7 is in position row 1 and column 3 so is obtained by multiplying row 1 x column 3

Question 5

 $det(\begin{bmatrix} 0 & 2\\ 3 & 0 \end{bmatrix}) = 0 - 6 = -6$ $det(\begin{bmatrix} 7 & 9\\ 3 & 0 \end{bmatrix}) = 28 - 27 = 1$ $det(\begin{bmatrix} -1 & -3\\ 3 & 4 \end{bmatrix}) = -4 + 9 = 5$ $det(\begin{bmatrix} 5 & 7\\ 3 & 0 \end{bmatrix}) = 0 - 21 = -21$ $det(\begin{bmatrix} 1 & 2\\ 3 & 4 \end{bmatrix}) = 4 - 6 = -2$

Smallest value is -21

Answer D

The transition matrix is

$$T = \begin{bmatrix} 0.3 & 0.4 \\ 0.7 & 0.6 \end{bmatrix}$$
$$S_{1} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

After 2 transition periods the state matrix is $S_3 = T^2 S_1 = \begin{bmatrix} 0.37 \\ 0.63 \end{bmatrix}$

Question 7

Steady state will be $\frac{0.4}{0.4 + 0.7} = \frac{0.4}{1.1}$

Answer B

Answer B

Question 8

The solution is found by evaluating $\begin{bmatrix} -4 & 3 \\ 3 & -2 \end{bmatrix} \begin{bmatrix} 3 \\ -1 \end{bmatrix}$

This uses the inverse of the original 2×2 matrix

Therefore the equations in matrix form are
$$\begin{bmatrix} 2 & 3 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 3 \\ -1 \end{bmatrix}$$

So the original equations are 2x + 3y = 3 and 3x + 4y = -1

Question 9

The number of holiday-makers who dance on the second night is $0.6 \times 100 + 0.5 \times 100 + 0.2 \times 100 = 130$

 $\frac{130}{300} \times 100 = 43.33\%$ therefore E is not true

Answer E

Answer A