The Mathematical Association of Victoria FURTHER MATHEMATICS SOLUTIONS: Trial Exam 2015 Written Examination 2

CORE (15 marks)

Question 1

a)	i) Number of cars towed is discrete	A1
	ii) Rainfall	A1
b)	Upper Boundary = $Q_3 + 1.5 \times IQR$	
	$= 13 + 1.5 \times (13 - 4)$	
	$= 13 + 1.5 \times 9$	
	= 13 + 13.5	
	= 26.5	
		A1

25.5 is not an outlier since 25.5 < 26.5 A1

A1

c) mean = 7.90 and s = 5.78

Stat Cal	culation	×
One-Var	iable	
	=7.9 =79 =925 =5.4854353 =5.7821565 =10 =2 =4 =5.5	

d)

$$m = \frac{r \times S_y}{S_x} = \frac{0.7984 \times 15.47}{5.78} = 2.137$$
A1
$$c = \overline{y} - m\overline{x} = 34.9 - 2.137 \times 7.9 = 18.018$$
A1

Number of cars towed = $2.137 \times rainfall + 18.018$

CORE continued

e)
$$slope = \frac{rise}{run} = \frac{2.137}{1} = \frac{21.37}{10}$$
 21 cars A1

f) $42 = 3.137 \times \text{rainfall} + 18.018$

$$rainfall = \frac{42 - 18.018}{2.137} = 11 \,\mathrm{mm}$$

g) The highest rainfall in the data set is 20 mm. This means that 25.5 mm is a case of extrapolation and therefore unreliable since the model may not continue beyond the data set. (Award mark for extrapolation) A1

a) log (rainfall) or (Number of cars towed)² Accept log(x) or
$$y^2$$
 A1

b) (i) Number of cars towed =
$$\frac{-108.96}{13} + 57.02 = 48.638... \approx 49 \text{ cars}$$
 A1

(ii) At
$$\frac{1}{13} = 0.08$$

$$residual = y_{actual} - y_{predicted} = 51 - 49 = 2$$
A1

Module 1: Number Patterns (15 marks)

Question 1

a)
$$d = 3 - 2.4 = 2.4 - 1.8 = 0.6$$

Therefore
 $t_5 = a + 4d$
 $= 1.8 + 4 \times 0.6$
 $= 4.2$
b) $A_n = a + (n-1)d$
 $= 1.8 + (n-1)0.6$
 $= 1.8 + (n-1)0.6$
 $= 1.8 + 0.6n - 0.6$
 $\therefore A_n = 0.6n + 1.2$ (must be in simplified form) A1
c) $A_n > 60$
 $0.6n > 58.8$
 $n > 58.8$
 $n > 58.8$
 $n > 98$
solve (0.6 • n+1.2>60, n)
 $n > 98$
 $n > 98$
 $n > 98$
 $n > 98$
 $n > 98$

The leak will exceed 1 litre per minute in the **99th** hour.

anE=1.8+(n-1).0.6 a_nE \mathbf{n} $\Sigma a_n E$ 19 12.6 136. 8 13.2 13.8 20 21 l 50 3.8 22 23 24 178.2 193.2 14.4 15 15.6 208.8 208.8

A total of 208.8 litres of water will leak in the first 24 hours.

© The Mathematical Association of Victoria, 2015

 $S_n = \frac{n}{2} \left[2a + (n-1)d \right]$

= 208.8

 $S_{24} = \frac{24}{2} \left[2 \times 1.8 + (24 - 1)0.6 \right]$

d)

A1

Module 1: Number Patterns continued

$$S_{n} = \frac{n}{2} [2a + (n-1)d]$$

$$= \frac{n}{2} [2 \times 1.8 + (n-1) \times 0.6]$$

$$= \frac{n}{2} [3.6 + 0.6n - 0.6]$$

$$= \frac{n}{2} [3 + 0.6n]$$

$$= 1.5n + 0.3n^{2}$$
Award 1 mark for correct method if answers are incorrect
(M1)
$$expand(\frac{n}{2} [2 \times 1.8 + (n-1)0.6])$$

$$[0.3 \cdot n^{2} + 1.5 \cdot n]$$

Therefore a = 1.5 and b = 0.3 A2

Question 2

e)

a) $\frac{t_2}{t_1} = \frac{7}{5} = 1.4$ and $\frac{t_3}{t_2} = \frac{9.8}{7} = 1.4$ (both calculations must be shown)

Since
$$\frac{t_2}{t_1} = \frac{t_3}{t_2} = 1.4$$
 then this follows a geometric sequence A1

b)
$$B_n = 5 \times 1.4^{n-1}$$
 A1

 $B_n > 1000$ $solve(5.1, 4^{x-1} > 1000, x)$ $5 \times 1.4^{n-1} > 1000$ {x>16.74667027} n > 16.74667...anE=5.1.4^(n-1) n $\mathbf{a_n}\mathbf{E}$ 202.48 283.47 396.86 $\frac{12}{13}$ 14 15555.60 16 777.84 171089.01088.97666890469 E.

It will first exceed 1000 litres in the **17th** hour.

A1

Module 1: Number Patterns continued

Question 3

a)
$$\frac{3}{20} \times 100 = 15\%$$
 A1

b)
$$a = 1 - 0.15 = 0.85$$
 A1

c)

$$S_{\infty} = \frac{a}{1-r} = \frac{20}{1-0.85} = 133.33...$$

I he total volume of water that will leak is 133 litres Al
--

Question 4

 $L_{20} = 11.05...$ 11 litres of water will leak in the 20th hour A1

- b) If $L_n = 12$ then $L_{n=1} = 0.9 \times 12 + 1.2 = 12$. Therefore the leak will not exceed 12 litres. A1
- c) If $L_n = 15$ and $L_{n+1} = 15$ then $c \times 15 + 1.2 = 15$ Solve for c c = 0.92 A1

Module 2: Geometry and Trigonometry (15 marks)

Question 1

a) Length of support =
$$\sqrt{15^2 + 10^2} = 18 \text{ cm}$$
 A1

b)
$$180 - 30 - 73 = 77$$
 A1

c)
$$BC = \frac{\sin(30^{\circ}) \times 180}{\sin(73^{\circ})}$$
 A1

d)
$$BC = 0.94 \text{ m} = 94 \text{ cm}$$
 A1

e) Area =
$$\frac{1}{2} \times 94 \times 180 \sin(77) = 8243 \text{ cm}^2 = 0.82 \text{ m}^2$$
 A1

f) *ABC* and *ADE* are similar triangles

AD = 1.8 - DB = 1.8 - 0.2 = 1.2 metres

$$\frac{DE}{BC} = \frac{AD}{AB}$$

$$DE = \frac{AD \times BC}{AB}$$

$$= \frac{1.2 \times 94}{1.8}$$

$$= 62.6666....$$

$$= 0.63$$
DE is 0.63 metres A1

$$SA_{\text{paint}} = \frac{1}{16} \times SA_{\text{swing}}$$

$$\therefore k^2 = \frac{1}{16}$$

$$\therefore k = \frac{1}{4}$$

$$\therefore k^3 = \frac{1}{64}$$

A1

$$V_{\text{paint}} = k^3 \times V_{\text{swing}}$$
$$= \frac{1}{64} \times 19000$$
$$= 297 \text{ cm}^3$$
A1

Module 2: Geometry and Trigonometry continued

Question 3

a) Area of playground
= circular area + rectangular area
=
$$\pi(5)^2 + 10 \times 15$$

= 228.5398...
 $\approx 229 \text{ m}^2$ A1

b) Entire Area =
$$\pi (5.23)^2 + 10.46 \times 15$$

= 242.83166...m²

Base Area of concrete = Entire Area – Area of playground
=
$$242.83166 - 229$$

= $13.83...$ M1

Volume = Base Area x height = $18.83...x 0.4 = 5.53 \approx 6 m^3$ A1

Question 4

a)
$$10 - 2 = 8 \text{ m}$$
 A1

b)
$$\theta = \tan^{-1}\left(\frac{8}{38}\right) = 12^{\circ}$$
 A1

Bearing = 270 + 27 + 20 = 317°

Note: An alternative answer of 083° is accepted for the use of the ambiguous case

Module 3: Graphs and relations (15 marks)

a)	C = 15x + 500	A1
b)	R = 35x	A1
c)	<i>A</i> (0,500)	A1
	Point B is where Revenue = Cost 15x + 500 = 35x x = 25	
	When $x = 25$, $R = C = 875$ Point B (25,875)	A1
d)	Profit = Revenue - Cost Solve $650 = 35x - (15x + 500)$ x = 57.5	M1
	Therefore minimum number of guests will be 58	A1
Quest	ion 2	
a)	He must prepare at least twice as many cold food hampers as he does hot food hampers.	A1
b)	Highlight the sides of the triangle with vertices $(0,0)$, $(0,20)$ and $(5,10)$	A1
c)	Maximum value x can take when $y = 8$ is 4	A1
d)	P = 60x + 20y	A1
e)	Maximum profit is \$500	A1
	Occurs at point (5,10) therefore 5 hot hampers and 10 cold hampers	A1
f)	P = 60x + 30y Solution is all integer points between (0,20) and (5,10)	M1
	(0,20), (1,18), (2,16), (3,14), (4,12), (5,10)	A1
g)	Substitute any of the 6 points. $Profit = 600	A1

Module 4 Business related mathematics (15 marks)

Question 1

a) Ronith pays
$$352 \times 1.1 = $387.20$$
 A1

b) Price before GST is added is
$$\frac{352}{1.1} = $320$$
 A1

Question 2

a) Cost is
$$2500 \times 1.03^5 = $2898$$
 A1

Annual depreciation rate is
$$\frac{500}{2500} \times 100 = 20\%$$
 A1

c) Solve
$$500 = 2500 \times (1 - \frac{r}{100})^4$$
 M1

a)
$$P = \frac{100Q}{r}$$

where $r = \frac{4.8}{12} = 0.4$
 $P = \frac{100 \times 2000}{0.4}$
= \$500,000 A1

Module 4 continued

Question 4

a.
$$R = 1 + \frac{r}{100}$$
 where *r* is the interest rate per period.

$$R = 1 + \frac{\frac{4.8}{12}}{100} = 1.004$$
 A1

b.
$$A = 20000 \times 1.004^{72}$$

= \$26,660 A1

c. Interest without added deposits = \$6660 to nearest dollar

Finance Solver

$$N = 72$$

 $I(\%) = 4.8$
 $PV = -20000$
 $Pmt = -50$
 $FV = ?$
 $PpY = 12$
 $CpY = 12$
Future value is \$30822.22 M1

Interest gained is \$10822 to nearest dollar Additional interest gained is $10822 - 6660 - (72 \times 50) = 562 A1

Module 5: Networks and decision mathematics (15 marks)

Question 1

a)	Elaine	A1
b)	Craig and Frederick	A1

A1

Question 2

a)	B, C, D, F, G	A1
b)	Each vertex is visited without returning to the starting point therefore Hamiltonian Path	A1
c)	ABCDHGFE	A1
d)	Because this would be an Euler circuit and this only exists if the degree of every vertex is even. Only A and E are of even degree.	A1
e)	3	A1

The three new roads would connect any 3 pairs of vertices with odd degree.

Module 5 continued

a)	11	A1
	Along path B-C-F	
b)	B-C-F-H-I	A1
c)	19 hours	A1
d)	Earliest start time = 4 . Latest start time = 7 .	M1
	Float time = Latest start time – Earliest start time = $7 - 4 = 3$	A1
e)	A, D and G	A1
	All have a float time of 5 hours.	
f)	A directed arrow from the end of A to the end of E labelled J, 2 or	
	A directed arrow from the end of B to the end of E labelled J, 2	A1

Module 6: Matrices (15 marks)

Question 1

a)	Drakes defeated Beavers	Al
b)	No side defeated Crabs	Al

c) Column 1 must contain all zeros Row 1 must contain three ones after the initial zero

Two answers are possible

 A
 B
 C
 D
 A
 B
 C
 D

 $R_{2015} = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} A \\ B \\ C \\ D \end{bmatrix}$ $R_{2015} = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} A \\ B \\ C \\ D \end{bmatrix}$

Question 2

a)
$$\begin{bmatrix} 0.5 \\ 0.3 \\ 0.2 \end{bmatrix} \begin{matrix} Y \\ N \\ U \end{matrix}$$
 A1

b) 10% of those who say "yes" in any particular week change to "no" the next week. A1

c)
$$0.3 \times 250 + 0.5 \times 150 + 0.6 \times 100 = 210$$
 A1

d) k = 500 A1

e)
$$500 \times \begin{bmatrix} 0.7 & 0.3 & 0.4 \\ 0.1 & 0.5 & 0.2 \\ 0.2 & 0.2 & 0.4 \end{bmatrix}^{19} \begin{bmatrix} 0.5 \\ 0.3 \\ 0.2 \end{bmatrix} = \begin{bmatrix} 270.8 \\ 104.2 \\ 125 \end{bmatrix}$$

125 are undecided

A1

Module 6 continued

Question 3

a)
$$\begin{bmatrix} 4 & 3 \\ 2 & 5 \end{bmatrix} \begin{bmatrix} b \\ w \end{bmatrix} = \begin{bmatrix} 46.50 \\ 49.50 \end{bmatrix}$$
 A1

b) The determinant of
$$\begin{bmatrix} 4 & 3 \\ 2 & 5 \end{bmatrix} = 14$$

As the determinant is non-zero there will be a unique solution. A1

c)

$$\begin{bmatrix} b \\ w \end{bmatrix} = \begin{bmatrix} 4 & 3 \\ 2 & 5 \end{bmatrix}^{-1} \begin{bmatrix} 46.50 \\ 49.50 \end{bmatrix}$$
$$= \begin{bmatrix} 6.00 \\ 7.50 \end{bmatrix}$$

Total for 1 beer and 1 wine is \$13.50

Question 4

a)

$$\begin{bmatrix} J \\ C \end{bmatrix} = \begin{bmatrix} \frac{1}{25} & -\frac{7}{150} \\ -\frac{1}{50} & \frac{2}{75} \end{bmatrix} \begin{bmatrix} 16250 \\ 12750 \end{bmatrix}$$
$$= \begin{bmatrix} 55 \\ 15 \end{bmatrix}$$

Each jumper costs \$55 and each cap costs \$15

b) Determine the inverse of
$$\begin{bmatrix} \frac{1}{25} & -\frac{7}{150} \\ -\frac{1}{50} & \frac{2}{75} \end{bmatrix}$$

The inverse is
$$\begin{bmatrix} 200 & 350 \\ 150 & 300 \end{bmatrix}$$
 M1

The original equations are:

$$200J + 350C = 16250$$
 and $150J + 300C = 12750$ A1

A1