FURTHER MATHEMATICS – UNITS 3&4 Written examination 2 Solutions

SECTION A – Core

Data analysis

Question 1 (9 marks) a. Fertilizer A 30 25 20 height, cm Fertilizer B 25 20 height, cm

b. Modal class = 50 - 60 cm

c. Negatively skewed.

d. mean =
$$\frac{\Sigma(xf)}{n}$$

= $\frac{2 \times 25 + 6 \times 35 + 13 \times 45 + 21 \times 55 + 40 \times 65 + 36 \times 75 + 24 \times 85 + 8 \times 95}{150}$
= 67.33
 $\approx 67 \text{ cm}$ 1A

e. i. 53.5 + 15.8 = 69.3 cm \Rightarrow above one standard deviation to the right of the mean: $\frac{100-68}{2} = 16\%$ 1A

1A

1A

A

ii. $53.5 - 2 \times 15.8 = 21.9$ cm \Rightarrow below two standard deviations to the left of the mean: $\frac{100 - 95}{2} = 2.5\%$ 1A

f.
$$z - \text{score} = \frac{x - \mu}{\sigma}$$

= $\frac{26.6 - 53.5}{15.8}$
= -1.70

A height of 26.6 cm is 1.7 standard deviations to the left of the mean.

Question 2 (5 marks)

a. The variable *Type of fertilizer (Fertilizer A* and *Fertilizer B*) is categorical nominal. 1A

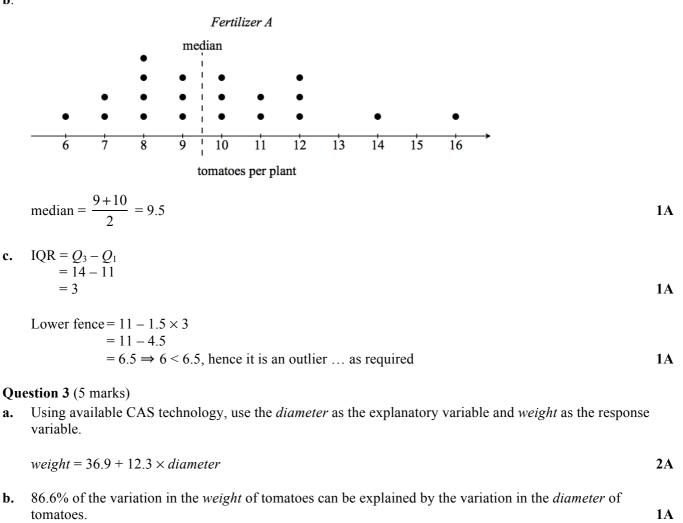
1A

1A

1A

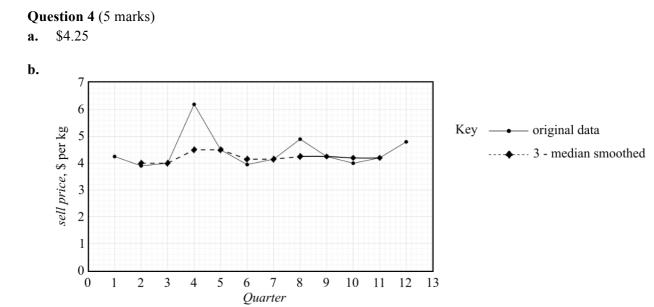
The variable Number of tomatoes per plant is numerical discrete.

b.



- c. Substitute diameter = 5.4 into the equation weight = $42.6 + 11.1 \times diameter$. weight = $42.6 + 11.1 \times 5.4$ = 102.54 grams
- d. Residual = actual predicted = 98 - 102.54= -4.54 1A

1A



c.

Year	Season	Quarter	Price, \$	4-mean smoothing	Centring
	Spring	1	4.25		
2016	Summer	2	3.90	4 5 9 7 5	
2016	Autumn	3	4.00	4.5875	4.61875
	Winter	4	6.20	4.65	
	Spring	5	4.50		
2017	Summer	6	3.95		
2017	Autumn	7	4.15		
	Winter	8	4.90		
	Spring	9	4.25		
2018	Summer	10	4.00		
2010	Autumn	11	4.20		
	Winter	12	4.80		

\$4.62

1A

1A

d. $0.98 + S + 0.93 + 1.20 = 4 \implies S = 0.89$

e. Re-seasonalised data = predicted (de-seasonalised) × seasonal index

$= 5.10 \times 0.98$	
= \$4.998	
≈ \$5	1A

Recursion and financial modelling

Question 5 (6 marks)

a.
$$d = \frac{h_4 - h_0}{4} = \frac{470 - 350}{4}$$

 $d = 30 \text{ mm}$ 1A

b.
$$h_{n+1} = h_n + 30$$
 1A

1M

1A

1A

1A

c. Substitute h_0 and h_1 into $h_1 = ah_0 + b \implies 440 = 500a + b \dots$ [1] Substitute h_1 and h_2 into $h_2 = ah_1 + b \implies 392 = 440a + b \dots$ [2] Use available CAS technology to solve the system of simultaneous equations [1] and [2]. a = 0.8 and b = 40 $h_{n+1} = 0.8h_n + 40 \dots$ as required

Altenative 'by hand' method

Subtract [1] – [2]: $48 = 60a \implies a = \frac{48}{60} = 0.8$ Substitute a = 0.8 into [1]: $440 = 500 \times 0.8 + b \implies b = 440 - 400 = 40$ $h_{n+1} = 0.8h_n + 40 \dots$ as required

d. The 4th picket has height $h_3 = 0.8h_2 + 40$.

$h_3 = 0.8 \times 392 + 40$	
= 353.6 mm	1A
The 5 th picket has height $h_4 = 0.8h_3 + 40$.	
$h_3 = 0.8 \times 353.6 + 40$	
= 322.88	
≈ 323 mm	1A

Question 6 (3 marks)

a. $26000 - 16250 = \$9/50$	a.	26000 -	16250 = \$9750
------------------------------------	----	---------	----------------

b. $16250 \div 5 = \$3250$ per year \Rightarrow Depreciation per unit $= \frac{3250}{15000}$ = \$0.217 $\approx \$0.22$

c. $26000 \div 3250 = 8$ years 8 - 5 = 3 years 1A

Question 7 (3 marks)

a. Using finance solver on available CAS technology

N: 36 I(%): **6.2** PV: -14000 Pmt: -100 FV: 20800 PpY: 12 CpY: 12

b. account balance =
$$20800 \left(1 + \frac{8.5}{400} \right) + 300$$
 or account balance = $20800 \times 1.02125 + 300$ **1A**

c. Using finance solver on available CAS technology

N: 1 I(%): 8.5 PV: -20800 Pmt: -300 **FV: 21542** PpY: 4

SECTION B – Applications

Module 1 – Matrices

Question 1 (5 marks)

a.

CpY: 4

$$\begin{array}{cccc} T & U & V \\ W_1 = \left[\begin{array}{ccc} 12.50 & \underline{13.75} & \underline{17.20} \end{array} \right] \end{array}$$
 1A

$$\begin{array}{cccc} T & U & V \\ W_2 = \left[\begin{array}{ccc} 18.00 & 21.50 & \underline{25.60} \end{array} \right] \end{array}$$
 1A

b. Order =
$$1 \times 5$$
 1A

c.
$$W_2 R = \begin{bmatrix} 188.05 & 251.40 \end{bmatrix}$$
 1A

Question 2 (4 marks)

a.
$$22 + 106 + 30 = 158$$
 items **1A**

b. $det(M) = 2622 \neq 0 \Rightarrow$ the matrix is invertible

1A

$$\mathbf{c.} \quad \begin{bmatrix} c \\ s \\ j \end{bmatrix} = \begin{bmatrix} \frac{17}{-13} & \frac{-10}{8} & \frac{-3}{2} \\ \frac{21}{21} & \frac{-13}{-13} & \frac{-3}{-3} \end{bmatrix} \times \begin{bmatrix} \frac{1127}{1517} \\ \frac{1517}{1287} \end{bmatrix}$$

$$\mathbf{1A}$$

d. Using available CAS technology solve the matrix equation from **part c.** for
$$c$$
, s and j .
 $c = 128, s = 59$ and $j = 85$

Question 3 (3 marks)

a.
$$\begin{bmatrix} 0.32 & 0 & 0 \\ 0 & 0.05 & 0 \\ 0 & 0 & 0.10 \end{bmatrix} \times \begin{bmatrix} 200 \\ 380 \\ 160 \end{bmatrix} = \begin{bmatrix} 64 \\ 19 \\ 16 \end{bmatrix} \Rightarrow 19 \text{ shirts}$$
 1A

		200 380 160]	64] [136
b.	<i>B</i> =	380	-	19	=	361
		160		16		144

c.
$$S_1 = TS_0 + B$$
$$S_2 = TS_1 + B$$
$$= T(TS_0 + B) + B$$
$$= T^2S_0 + TB + B$$

Module 2 – Networks and decision mathematics

Question 1 (3 marks)

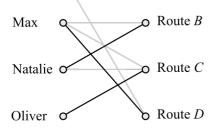
a.

	Leo	na	M	ax	Nat	alie	Oliv	ver
Route A	0		1		3		5	
Route B	4		0		0		1	
Route C	2		0		0		0	
Route D	0		0		1		4	

The minimum number of lines that cover the 0s is four, which is equal to the number of rows.

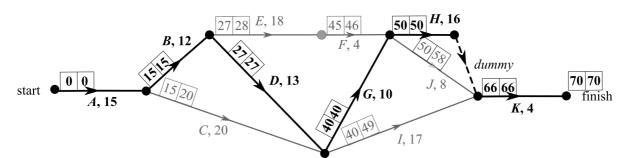
6

- b. Oliver can be assigned a route first because there is only one 0 in his column.
 1A If the lines are crossed horizontally, then Leona can be assigned a route first because there is only one 0 in her row.
- c. Leona (A; 10 min) + Oliver (C; 9 min) + Natalie (B; 12 min) + Max (D; 12 min) = 43 min Leona \bigcirc Route A



Question 2 (5 marks)

- a. The *dummy* activity is introduced to clearly show the precedence of activity *H* to activity *K*. 1A
- **b.** The critical path includes activities A, B, D, G, H, dummy and K.



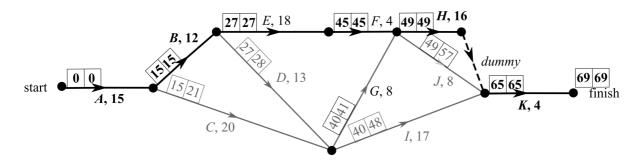
1A

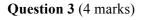
1A

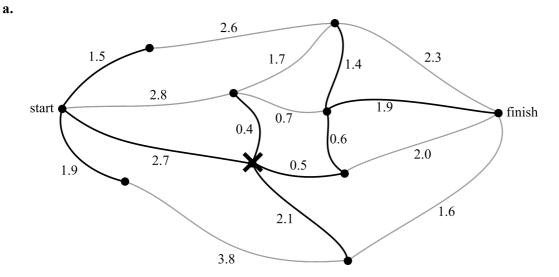
1A

1A

- c. Activities *E* and *F* have a float time of 1 minute.
- **d.** Reduces the completion time by 1 minute and the critical path to *A*, *B*, *E*, *F*, *H*, *dummy* and *K*.





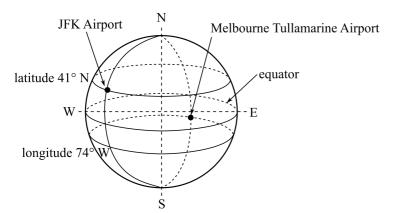


b. No. The minimum spanning tree should have edge 1.6 instead of edge 2.1.

c. Hamiltonian circuit.

Module 3 – Geometry and trigonometry

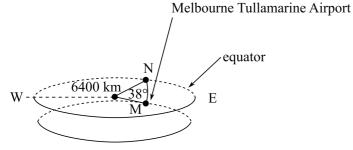
Question 1 (5 marks)



2A

2A

1A



Arc length
$$MN = 2\pi r \frac{\theta^{\circ}}{360^{\circ}}$$

= $2\pi \times 6400 \times \frac{38^{\circ}}{360^{\circ}}$
= 4244.64 km 1A

c. Difference in longitude =
$$145^{\circ} - (-74^{\circ})$$

= 219°

1 hour
$$\approx 15^\circ \Rightarrow \frac{219^\circ}{15^\circ} = 14.6 \approx 15$$
 hours

1A

1A

Melbourne is about 15 hours ahead of New York. This means that when Corrine's flight leaves d. Melbourne, the time in New York is 11:15 am - 15 hours = 8:15 pm on the 20th of December. From 8:15 pm on the 20th of December to 4:30 pm on the 21th of December there are 20 hours 15 minutes. Flight time = 20 hours 15 minutes **1**A

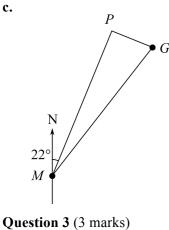
8

Question 2 (4 marks)

a.
$$\theta = 360^{\circ} - 65^{\circ} = 295^{\circ} T$$

Using Pythagoras theorem, $MG = \sqrt{1.2^2 + 0.24^2} = 1.22 \text{ km}$ b.

b.



$$\angle PMG = \tan^{-1}\left(\frac{0.24}{1.20}\right) = 11^{\circ}$$
 1A

$$Bearing = 22^{\circ} + 11^{\circ} = N33^{\circ}E$$
 1A

 $\operatorname{Area}_{\operatorname{large sector}} = \frac{104^{\circ}}{360^{\circ}} \times \pi \times 30^2 = 816.814 \text{ m}^2$ a. Area_{small sector} = $\frac{104^\circ}{360^\circ} \times \pi \times 16^2 = 232.338 \text{ m}^2$ Area = $Area_{large sector} - Area_{small sector}$ = 816.814 - 232.338 $= 584.476 \text{ m}^2$ Volume = 584.476×0.1 = 58.4476

 $\approx 58 \text{ m}^3$

b. Arc length = $\frac{\theta^{\circ}}{360^{\circ}} \times 2\pi \times \text{radius}$ $\theta^{\circ} = \frac{360^{\circ} \times \text{Arc length}}{2\pi \times \text{radius}}$ $= \frac{360^{\circ} \times 9}{2\pi \times 65}$ = 7.93 $\approx 8^{\circ}$

Question 1 (4 marks)

a. Time = 1 hour and 36 minutes = 1.6 hours Average speed = $\frac{\text{distance travelled}}{\text{time taken}}$ = $\frac{120}{1.6}$ = 75 kmh⁻¹ 10-5

b. The volume of petrol per kilometre = $\frac{10-5}{0-50}$ = -0.1 = decrease of 0.1 L per km

c. Before 50 km, from **part b.**, the change in the volume of petrol per kilometre = -0.1After 50 km, the change in the volume of petrol per kilometre = $\frac{25-20}{50-120}$

= -0.07 L per kmThe car used more petrol per kilometre in the first 50 km.

d. The tank was filled with petrol from 5 L to 25 L.

Question 2 (4 marks)

- **a.** Substitute t = 1 and d = 3.5 into $d = kt^2$. $3.5 = k \times 1^2$ k = 3.5
- **b.** Average speed = $\frac{87.5 0}{5 0}$ = 17.5 ms⁻¹
- c. $56 = 3.5 \times t^2$ $t^2 = \frac{56}{3.5}$ = 16 $t = \sqrt{16}$

$$= \sqrt{16}$$

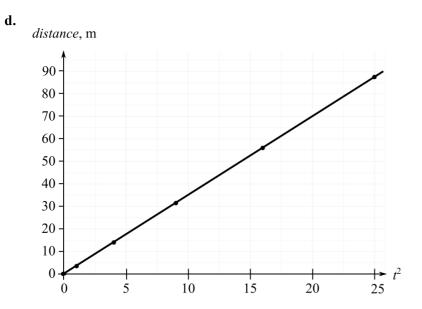
= 4 s 1A

1A

1A

1A

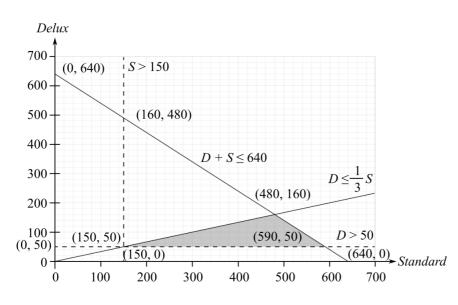
1A



Question 3 (4 marks)

a. Revenue = $300 \times 150 + 500 \times 50 = 70000 Cost = $45000 + 120 \times 150 + 140 \times 50 = 70000 Cost = Revenue for 150 *standard* snowboards per day and 50 *delux* snowboards per day as required. **1M&A**

b.
$$S \ge 3D$$



2A

1A