2004 Further Mathematics Written Examination 2 (Analysis task) Suggested answers and solutions

b

С

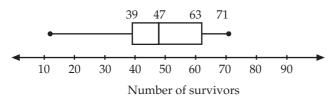
Core: Data analysis

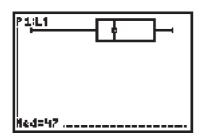
Question 1

12 26 27 28 39 40 41 42 44 50 55 56 56 63 64 70 70 71

Lowest score is 12

Highest score is 71


Median is between the 9th and 10th score


Median =
$$\frac{44 + 50}{2} = 47$$
 [A1]

1st Quartile is the 5th score or 39

3rd Quartile is the 14th score or 63 [A1]

Number of survivors on 18 lifeboats of the Titanic

Interquartile Range = 3rd Quartile - 1st Quartile = 63 - 39 = 24[consequential A1] Lower limit = $1st Quartile - 1.5 \times IQR =$ $39 - 1.5 \times 24 = 39 - 36 = 3$ Upper Limit = $3rd Quartile + 1.5 \times IQR =$ $63 + 1.5 \times 24 = 63 + 36 = 99$ All scores are within these limits and so there were no outliers [A1 with workings] The distribution is negatively skewed. [A1] It has a centre of 47 passengers and a

Question 2

From the table:

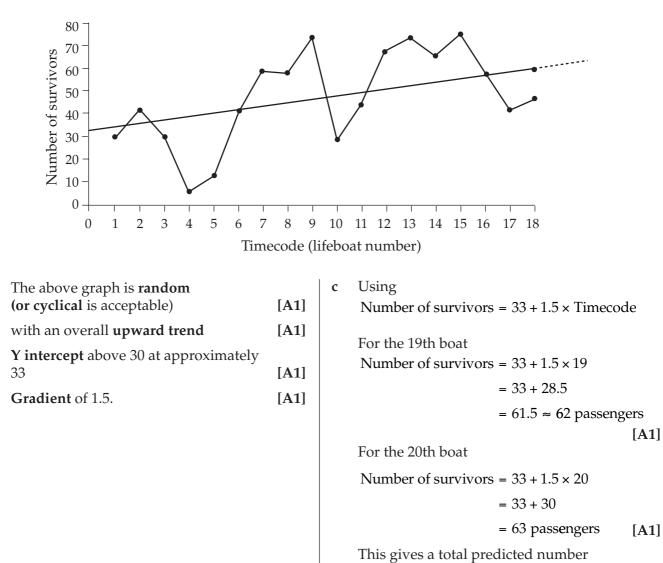
range of 59 passengers.

a The group that had the best survival rate was **female** (296 survivors and 106 deaths or

296 out of 402 survived
$$\frac{296}{402} \times \frac{100}{1} \approx 74\%$$
).

b For the men the class with the worst survival rate was 2nd class (14 survivors and 154 deaths or 14 out of 168 survived

$$\frac{14}{168} \times \frac{100}{1} = 8.3\%).$$
 [A1]


[A1]

Question 3

b

Time series of number of survivors launched into 18 lifeboats

Total Core = 15 marks

of 125 extra survivors (62 + 63)

[A1]

Module 1 : Number patterns and applications

Question 1

24			
а	4, 7, 10, 13	[A1]	
b	Show, for example, that $t_2 - t_1 = t_3 - t_2$		
	i.e. $7 - 4 = 10 - 7 = 3$	[M1]	
с	Use $t_n = a + (n-1)d$ where		
	a = 4 and $d = 3$	[M1]	
	$t_n = 4 + (n - 1)3$		
	$t_n = 4 + 3n - 3$		
	$t_n = 3n + 1$	[A1]	
d	Let $t_n = 100$ therefore $100 = 3n + 1$	[M1]	
	3n = 99		
	$n = 33 \Rightarrow$ on the 33rd Sunday	[A1]	
e	Use $S_n = \frac{n}{2} [2a + (n-1)d]$ where		
	a = 4 , $d = 3$, $n = 52$	[M1]	
	$S_{52} = 26[8 + 51 \times 3]$		
	$S_{52} = 4186$	[A1]	
Question 2			
a	a = 2, b = 1, c = 3		
	Any two correct	[A1]	
	All three correct	[A1]	
b	$t_1 = 3, t_2 = 7, t_3 = 15, t_4 = 31$	[A1]	
	7 – 3 \neq 15 – 7 \Rightarrow not arithmetic		
	$\frac{7}{3} \neq \frac{15}{7} \Rightarrow$ not geometric	[M1]	
c	Use formula $t_n = a^{n-1}t_1 + b\frac{(a^{n-1} - 1)^n}{a-1}$	<u>l)</u>	
	where $a = 2, b = 1$ and $t_1 = 3$	[M1]	
	$(2^{n-1} 1)$		

$$t_n = 2^{n-1} \times 3 + 1 \frac{(2^{n-1} - 1)}{1}$$

$$t_n = 3 \times 2^{n-1} + 2^{n-1} - 1$$

$$t_n = 4 \times 2^{n-1} - 1$$
 [M1]

d
$$t_7 = 3 \times 2^6 + 2^6 - 1$$

 $t_7 = 255$ [A1]
Total Module 1 = 15 marks

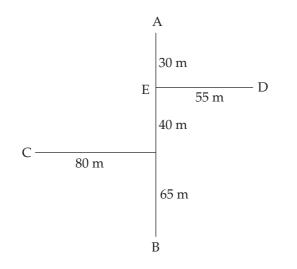
Module 2 : Geometry and trigonometry

Question 1

Question 1				
a	When 3 sides of a non right-angled triangle are given, the cosine rule may be used to determine any of the angles.	[A1]		
b	Using the cosine rule			
	$\cos N = \frac{750^2 + 600^2 - 1000^2}{2 \times 750 \times 600}$	[M1]		
	$\cos N = -0.0861$			
	$N = 94.94^{\circ}$	[A1]		
c	Angle = $180^{\circ} - (94.94^{\circ} + 36.72^{\circ})$			
	= 48.34°	[A1]		
d	Choose any 2 sides and the included ar e.g.	ngle		
	Area = $\frac{1}{2} \times 750 \times 1000 \times \sin 36^{\circ}43'$	[M1]		
	= 224200 km ² to the nearest hundred square kilometres	[A1]		
e	There are 1000 metres in 1 kilometre therefore there are			
	1000^2 metres ² in 1 km ² .			
	So the answer must be multiplied by			
	$1000^2 = 1,000,000$	[A1]		
f	The bearing of Sicily from Sardinia is	[]]		
	$103.28^\circ + 36.72^\circ = 140^\circ T$	[A1]		
g	Calculation of the angles shown in the diagram i.e. $180^{\circ} - 140^{\circ} = 40^{\circ}$	[M1]		
	Sardinia 140° 40° Sicily			

Bearing of Sardinia from Sicily is $360^{\circ} - 40^{\circ} = 320^{\circ}T$ [A1]

© The Mathematical Association of Victoria, 2004


Question 2

a Using Pythagoras' theorem

$$CD^2 = 135^2 + 40^2$$
 [M1]

CD = 140.8 m, correct to 1 decimal place. [A1]

b Angle ADB = angle ADE + angle EDB

angle ADE =
$$\tan^{-1} \frac{30}{55} = 28.61^{\circ}$$
 [M1]

angle EDB =
$$\tan^{-1} \frac{105}{55} = 62.35^{\circ}$$
 [M1]

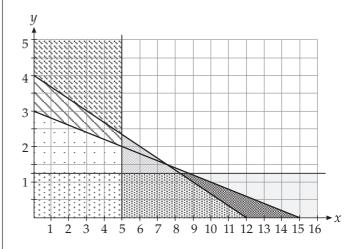
Angle ADB = angle ADE + angle EDB

Module 3 : Graphs and relations

Question 1

a i 25 dogs require at least 200g of soft food.

$$25 \times 200 \text{ g} = 5000 \text{ g} = 5 \text{ kilograms}$$
 [A1]


ii
$$x \ge 5$$
 [A1]

b
$$50x + 150y \ge 24 \times 25$$

$$50x + 150y''$$
 [A1]

Question 2

a The feasible region is the unshaded region on the diagram below.

Region $x + 5y \ge 15$ correct	[A1]
Other regions correct	[H1]
Points $(5, 2\frac{1}{3})$ and $(7.5, 1.5)$	[H1]
Point (8.75, 1.25)	[A1]

Question 3

b

а	C = 1.5x + 5y	[A1]
---	---------------	------

b Substitution of all points [M1]
(5, 7/3) gives C = \$19.17
(7.5, 1.5) gives min.cost \$18.75 [H1]
(8.75, 1.25) gives C = \$19.38

c
$$\frac{\$18.75}{25}$$
 = $\$0.75$ = 75 cents [A1]

Question 4

At the break-even point: Costs = $207 + 15 \times 0.8$

Revenue = $15 \times d$ where *d* is the cost of boarding a dog for a day

So $207 + 15 \times 0.8 = 15d$ [A1]

 $\Rightarrow d = \$14.60$

Total Module 3 = 15 marks

[M1]

Module 4 : Business-related mathematics

Question 1

a	Percentage is	$\frac{6149}{286000} \times 100 = 2.$	15% [A1]
---	---------------	---------------------------------------	-------------------

b 47% of \$40 000

 $=\frac{47}{100} \times \$40000 = \$18\,800$ [A1]

- c 6% of (\$564 000 \$115,000) [M1]
 - $= \frac{6}{100} \times $449\,000$ = \$26 940 plus \$2560

Question 2

a Monthly payments so interest rate, *r*, is

$$\frac{6.48}{12} = 0.54$$

$$R = I + \frac{r}{100} = 1.0054$$
[A1]

$$n = 25 \times 12 = 300$$
 [A1]


b Using the TVM solver on the calculator:

N=300 1%=6.48 PV=-220000 ■ PMT=1482.707524 FV=0 P/Y=12
C/Y=12 PMT:[IN] BEGIN

Payments are \$1482.71 per month

[A1]

c Using the TVM solver on the calculator:

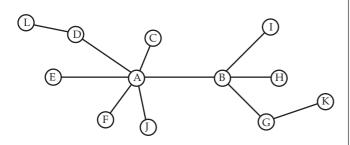
Payments are \$1622.92 per month;	[A1]
an increase of \$140.21	[H1]

d Using the TVM solver on the calculator:

Term of the loan is 528 fortnights	[M1]
$\frac{528}{26}$ = 20.3 years	[A1]

Question 3

а	$128 \times 52 \times 3 = 19968$		
	\$19968 - \$16500 = \$3468	[A1]	
b	$\frac{\$3468}{3} = \$1156 \text{ interest per year}$		
	$\frac{1156}{16500} \times 100 = 7.006\%$		
	Flat rate of interest = 7.01%	[H1]	
С	Substituting $n = 156$ and		
	<i>flat rate</i> = 7.01 in the formula for		
	effective rate of interest		
	effective rate = $\frac{2n}{n+1}$ × flat rate	[M1]	
	gives		
	effective rate = $\frac{2 \times 156}{156 + 1} \times 7.01$		
	= 13.93		
	Effective rate of interest is 13.9%	[A1]	
	Total Module 4 = 15 marks		


Module 5 : Networks and decision mathematics

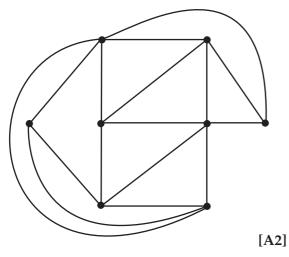
Question 1

a Set up servers A and B and add computers C-F, G-I.

Connect printers to A and G, scanner to D.

[A2]

b Output from computer H would travel via a pathway


H-B-G-K or H-B-A-J [A1]

Question 2

a Move the connection between 1 and 6 outside 2.

Move the connection between 3 and 8 outside 7.

Move the connnection between 1 and 8 to be outside.

b This is a planar graph. [A1]

Question 3

- a Only vertices 3 or 7 are of odd degree. [A1]
- b If started with 3, end at 7, if started with 7 end at 3. [A1]
- c Starting at 3:
 - 3-4-5-6-7-5-3-2-1-7 3-5-7-6-5-4-3-2-1-7 3-2-1-7-6-5-4-3-5-7and other paths too
 Starting at 7: 7-6-5-4-3-5-7-1-2-3 7-5-3-4-5-6-7-1-2-3 7-1-2-3-5-7-6-5-4-3[A1]
 and other paths too

Question 4

а

Activity	Immediate Predecessor(s)
А	_
В	_
С	А
D	В
Е	В
F	C,D
G	E,F
Н	C,D
Ι	C,D
J	G,I

b Earliest is 14 weeks.

Enter latest completion time for each pathway.

Activity A: 2 weeks Activity B: 3 weeks Activity C: 6 weeks (via A) Activity D: 7 weeks (via B). Activity E: 5 weeks (via B) Activity F: 8 weeks (via D) Activity G: 11 weeks (via D and F) Activity H: 11 weeks (via D) Activity I: 8 weeks (via D) Activity J: 14 weeks (via D, F and G) [A1]

[A2]

c	From above analysis the critical path is $B - D - F - G - J$ [A	A1]
d	From earliest completion time subtract the next critical path activity tome and any activities leading from there.	
	Non Critical activities are A, C, E, H and I	Ι
	Float(H) = 14 - 7 - 4 = 3 weeks	
	Float(I) = 14 - 7 - 3 - 1 = 3 weeks	
	Float(E) = 14 - 8 - 3 = 3 weeks	
	Float(C) = 14 - 7 - 6 = 1 week	
	Float(A) = 14 - 7 - 6 = 1 week [4]	A2]
	Total Module 5 = 15 marks	