

Further Mathematics Exam 2: Solutions – Multiple choice **MODULE 1: NUMBER PATTERNS**

Question 1

a.
$$t_1 = 80, t_2 = 96, t_3 = 112$$

 $t_2 - t_1 = 96 - 80 = 16$
 $t_3 - t_2 = 112 - 96 = 16$ M1

Therefore there is a common difference so the sequence is arithmetic.

b.
$$t_{14} = a + 13d$$

= 80 + 13 × 16
= 288 A1

c.
$$S_n = \frac{n}{2} [2a + (n-1)d]$$

 $S_{20} = 10[2 \times 80 + 19 \times 16]$ M1
 $= 4640 \text{ kg}$ A1

Question 2

a. $\frac{7.8}{5.2} = 1.5$ **A1**

b.
$$t_3 = ar^2$$

 $t_3 = 5.2 \times 1.5^2$
 $= 11.7 \text{ m}$ **A**

c.
$$t_{\rm n} > 200$$

 $ar^{n-1} > 200$ **M**1

Method 1: Using the Calculator

In the sequence mode Type $u(n) = 5.2 \times 1.5^{(n-1)}$

Then go to TABLE And scroll down until u(n) > 200

\mathbf{n}	u(n)	
7 8 9 10 12 13	59,231 88,847 133,27 199,91 299,869 49,79 674,68	
n=11		

This occurs when n = 11

Method 2: Using Logs

1
5.2×1.5^{*n*-1} > 200
1.5^{*n*-1} >
$$\frac{200}{5.2}$$

n-1 > $\frac{\log(38.46)}{\log(1.5)}$
n.>1+9
n>10
 \therefore *n* = 11 for either method

Question 3

a. The height of beanstalk at the end of these 3 weeks is

$$15 + S_3 = 15 + 3 + 2.55 + 2.1675 = 22.72 \text{ metres}$$
 A1

b. The beanstalk grows

$$S_{\infty} = \frac{a}{1-r}$$

$$S_{\infty} = \frac{3}{1-0.85}$$

$$= \frac{3}{0.15}$$

$$= 20 \text{ m}$$
A1

The maximum height of the beanstalk is 20 + 15 = 35 m

Question 4

a.
$$A_2 = 0.96A_1 + 2$$

= 0.96 × 18 + 2
= 19.28 litres
 $A_3 = 0.96A_2 + 2$
= 0.96 × 19.28 + 2
= 20.51 litres A1

b. Using the sequence mode on the calculator u(n) = 0.96 u(n - 1) + 2 $u(n \min) = \{18\}$

```
Ploti Plot2 Plot3

nMin=1

\u(n)80.96u(n-1)

+2

u(nMin)8(18)8

\u(n)=

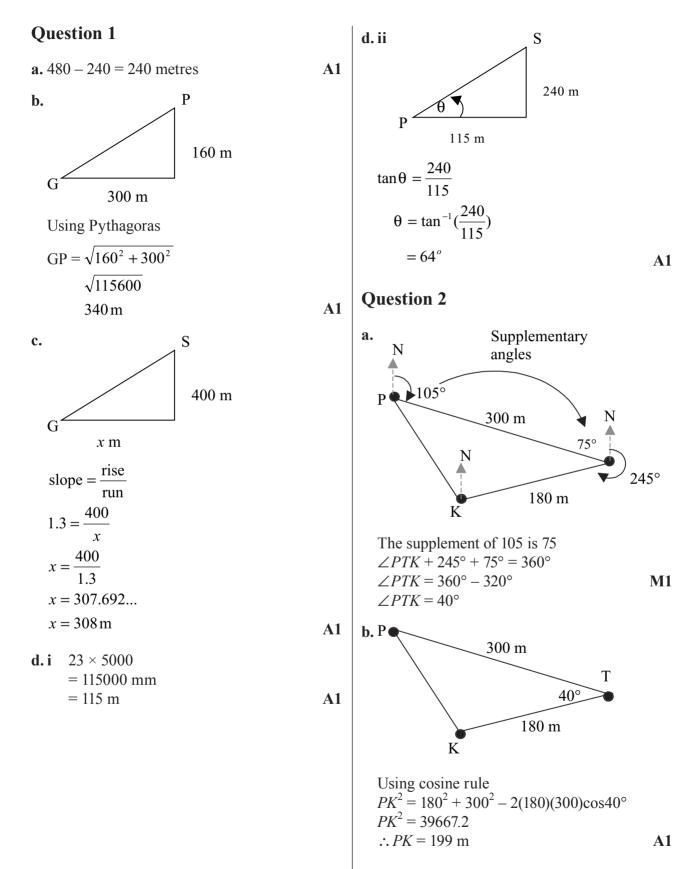
u(nMin)=

\u(n)=
```

Go to TABLE to find a list of the first seven terms

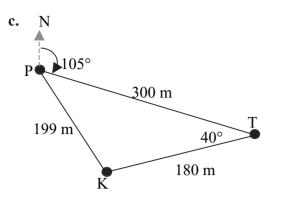
2	u(n)	
a www.swar	18 19.28 20.509 21.688 22.821 23.908 24.952	
n=1		

$$\begin{array}{l} A_1 + A_2 + A_3 + A_4 + A_5 + A_6 + A_7 \\ = 18 + 19.28 + 20.509 + 21.688 + 22.821 \\ + 23.908 + 24.952 = 151.158 \ \text{litres} \end{array} \quad \textbf{A1}$$


c. Let $A_n = 50$

Then $A_{n+1} = 0.96 \times 50 + 2$ = 48 + 2 = 50

i.e. the sequence is being reduced by the same amount that is being added on. So the sequence becomes stable at 50 A1

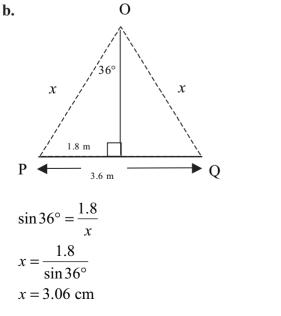

Total 15 marks

Further Mathematics Exam 2: Solutions – Multiple choice MODULE 2: GEOMETRY & TRIGONOMETRY

A1

A1

To find angle KPT Use sine rule


 $\frac{\sin P}{180} = \frac{\sin 40^{\circ}}{199}$ $\sin P = \frac{180 \sin 40}{199}$ $\sin P = 0.5814...$ $P = \sin^{-1}(0.5814...)$ $P = 35.55^{\circ}$ M1

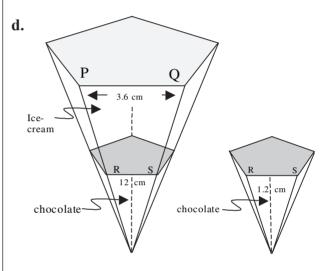
Bearing of Kiosk from Picnic area = $105^{\circ} + 35.55^{\circ}$ = $141^{\circ}T$

d.
$$A = \frac{1}{2} \times 180 \times 300 \sin 40^{\circ}$$

= 17355 m² A1

Question 3

a. $\frac{360}{5} = 72^{\circ}$ A1



c.
$$A_{POQ} = \frac{1}{2} \times 3.06 \times 3.06 \sin 72^{\circ}$$

= 4.4526...
Area of pentagon = 5 × 4.4526
= 22.26 cm²

Exact answer Area of pentagon

$$= 5 \times \frac{1}{2} \times \frac{1.8}{\sin 36^{\circ}} \times \frac{1.8}{\sin 36^{\circ}} \times \sin 72^{\circ}$$

= 22.297...
= 22.30 cm²

[accept answers between 22.26 and 22.30] A1

Length ratio = 3.6 : 1.2= 3 : 1

Volume ratio = cone : chocolate
$$3^3 : 1$$

 $27 : 1$ A1

So
$$\frac{26}{27}$$
 of the cone consists of ice-cream. A1

Further Mathematics Exam 2: Solutions – Multiple choice MODULE 3: LINEAR RELATIONS AND GRAPHS

g. Revenue = Cost

Question 1

Question 1		$40x = 30\ 000 + 12x$	N/T1
a. 6000	A1	$28x = 30\ 000$	M1
b. Select two points from second segment and use $m = \frac{R_2 - R_1}{x_2 - x_1}$ for example		x = 1071.429 1072 pairs of shoes Question 2	A1
$m = \frac{150\ 000 - 60\ 000}{6000 - 1500} = \frac{90\ 000}{4500} = 20$	M1	a.	
Substitute a point (<i>x</i> , <i>R</i>) in $R = 20x + k$		Week 1 2 3 4	
eg 60 000 = $20 \times 1500 + k$ 60 000 = $30 000 + k$ $\therefore k = 30 000$	M1	Deficit 4000 2000 1333 1000	A1
c. i. \$40 000	A1	b. $k = d \times t$ = 4000 × 1	
ii. \$94 000	A1	= 4000	A1
d. Straight line with <i>y</i> -intercept (0, 60 000) Correct end-point (60 000, 102 000)	A1 A1	c. If the production reaches 5000 then the deficit is zero, but	
e. Revenue = Cost $20x + 30\ 000 = 60\ 000 + 7x$	M1	$t = \frac{4000}{d} \text{ becomes } t = \frac{4000}{0} = undefined$ Total 15 ma	A1
$13x = 30\ 000$			aiks
x = 2307.69 2308 pairs of shoes	A1		
f. Profit = Revenue – Cost = $(20x + 30000) - (7x + 60000)$ = $13x - 30000$ = $13 \times 6000 - 30000$ = \$48 000	A1		
Alternatively find Revenue and Cost separately			
Revenue = $20x + 30\ 000$ = $20 \times 6000 + 30\ 000$ = $120\ 000 + 30\ 000$ = $150\ 000$			
$Cost = 7x + 60\ 000$ = 7 × 6000 + 60 000 = 42 000 + 60 000 = 102 000			
Profit = Revenue - Cost = 150 000 - 102 000 = \$48 000			

Further Mathematics Exam 2: Solutions – Multiple choice MODULE 4: BUSINESS-RELATED MATHEMATICS

Question 1

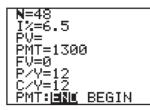
a. This is a compound interest calculation. Substitute in the formula

$$A = P \times R^{n}$$
 where $P = 5000$,
 $R = 1 + \frac{\frac{5.4}{12}}{100} = 1.0045$ and A1

 $n = 5 \times 12 = 60$ A1 $5000 \times 1.0045^{60} = 6545.856.... \approx 6546$

b. Using the 'compound interest' formula for the inflated amount

$$P = \$240$$


$$R = 1 + \frac{2.8}{100} = 1.028$$

$$n = 8$$

Inflated amount =

 $240 \times 1.028^8 = 299.334...$ $\approx 299.33

> Use of the correct type of formula M1 Correct answer A1

c. Using the TVM solver on the calculator set up the screen for $4 \times 12 = 48$ months, interest rate 6.5% p.a., present value ?, payment of \$1300 per month and future value of 0.

With the cursor on PV key \subseteq :

Imogen's parents will need \$54 818 to provide \$1300 per month for 4 years.

Something written down that shows they are on the right track M1 Correct answer A1

(Note: Both marks awarded if only the correct answer is given)

d. Using the TVM solver on the calculator set up the screen for $8 \times 12 = 96$ months, interest rate 6.5% p.a., present value -6546, payment of ? per month, future value of \$60 000.

With the cursor on PMT key \subseteq :

Imogen's parents will need to save \$390.55 each month to have \$60 000 after 8 years if they start with \$6546 in the account.

> Something written down that shows they are on the right track M1 Correct answer A1

> > **SOLUTIONS** – continued

$$\frac{1100}{5500} \times \frac{100}{1} = 20\%$$
 A1

b.

HECS/HELP debt	Years of inflation	Inflated amount (\$)
\$5500	6	6491.15
\$5800	5	$5800 \times 1.028^5 = 6658.76$
\$6100	4	$6100 \times 1.028^4 = 6812.43$

 $Total = $19\ 962.34 \approx $19\ 962$

'5' and '4' in table A1 One other calculation correct A1 Total correct A1

c. $\frac{4}{100} \times \$19962.34 \approx \$798.49 \approx \$798$ A1

d. Using the TVM solver on the calculator set up the screen for $6 \times 12 = 72$ months, interest rate ? p.a., present value -4400, payment of \$0 per month and future value of \$6491.

N=72 I%=∎ PV= -4400 PMT=0)
FV=6491 P/Y=12 C/Y=12 PMT:INN	BEGIN

With the cursor on I%, key \subseteq :

N=72 I%=6.497729643
PV=-4400 PMT=0
FV=6491 P/Y=12
Ċ/Ÿ=ĪŹ PMT: EN E BEGIN

The interest rate will need to be 6.498%

Something written down that shows they are on the right track M1

Correct answer A1

Further Mathematics Exam 2: Solutions – Multiple choice MODULE 5:NETWORKS AND DECISION MATHEMATICS

A1

Question 1

a. Either CBAFEDC or CDEFABC

Circuit starting and ending at C M1 Correct circuit A1

b. A Hamiltonian circuit visits each of the vertices once only and starts and ends at the same vertex.

Question 2

a. Starting with the person who has only one task that he/she can do

Denise can only do *Equipment* which leaves *Catering co-ordinator* for Paolo, *Drive bus* for Rex, *Timekeeper* for Gina and *First Aid* for Stuart.

Volunteer	Task
Gina	Timekeeper
Rex	Drive bus
Stuart	First Aid

Two correct A1 All three correct A1

Question 3

Using the Hungarian algorithm subtract the minimum from each row.

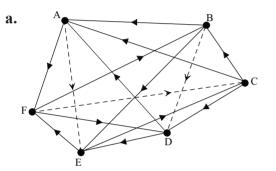
-38-	30	- \$	0	-0-
-3-	0	-32-	-20	-11
38	32	0	19	28
22	34	0	23	48
2	0		-25	0

Only four lines needed to cover the zeros (allocation can be made when five lines are needed to cover the zeros) so subtract the minimum from each column.

-36	30	•	0	-0-
-1-	0	-32	20	-11
36	32	0	19	28
20	34	0	23	48
0	0	32	-25	0

Still only four lines needed.

Subtract the minimum(19) from the uncovered elements and add it to the elements covered by two lines.


Five lines needed so start allocation. Only one zero in rows 2 and 4.

36	30	19	¢	0
1		51	20	11
17	13	⇔	0	9
1	15	0	4	29
0	\$	51	25	

This eliminates zeros in columns 2 and 3. Continuing in this manner gives the final allocation (see table on next page). RefereeTownGregFHarryCJaneEKenDMarioB

Method, something written down. M2 Answer correct A1

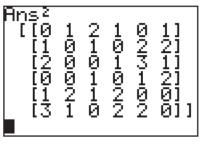
Question 4

All correct A1

b. The team from Town A defeated the team from Town F so a '1' is in that position.

The team from Town C did not play the team from Town C so a '0' is in that position.

Defeated town


				С				
	A	0	0	0	0	1	1	
	В	1	0	0	1	1	0	
M – Tourn	C	1	1	0	1	0	0	
$\mathbf{W} = 10\mathbf{W}\mathbf{H}$	D	1	0	0	0	1	0	
	E	0	0	1	0	0	1	
M = Town	F	0	1	1	1	0	0	

Both correct A1

c. A second level win is when, for example, the team from town A defeated the team from town F, who defeated the team from Town D. The team from Town A is said to have a second level win over the team from Town D.

From the graph it can be seen that **the team from Town D** did not have a second level win over the team from town A.

Alternatively the second level wins are given in the matrix M^2 . A zero appears in the 1st column only alongside A and D.

A1

- **d.** Adding the elements of the rows will give the number of first and second level wins.
 - A 7 B 9 C 10
 - D 6
 - E 8
 - F 11

The team from Town F is the overall winner.

Question 5

a. The minimum completion time is the path that takes the longest time (the critical path) from start to finish.

In this case the critical path is BFIJ which has a total duration of 24 days. A1

b. Only reducing the activities on the critical path will reduce the overall completion time.

If activity F is reduced by 3 days then a new critical path, BEHJ (22 days) will become operational. However, activity E can be reduced by one day giving both paths a completion time of 21 days.

So activity E should be reduced by 1 day and activity F by 3 days.

Reducing activity F M1 Correct answer A1

Total 15 marks

Further Mathematics Exam 2: Solutions – Multiple choice MODULE 6 : MATRICES

Budget Meats makes \$402 profit at store R, \$391.05 profit at store S and \$185 profit at store Q.

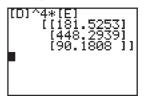
A1

A1 A1

A1

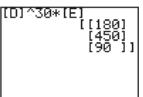
A1 A1

Question 4


a. This week $\geq 3 \quad 1,2 \quad 0$ $T = \begin{bmatrix} 0.6 & 0.1 & 0.3 \\ 0.3 & 0.8 & 0.4 \\ 0.1 & 0.1 & 0.3 \end{bmatrix} \geq 3$ Correct figures in columns M1 All correct A1

$$\mathbf{b.} \mathbf{I}_0 = \begin{bmatrix} 131\\386\\203 \end{bmatrix}$$

A1


c. The expected numbers are given by $T^4 \times I_0$

Using the calculator:

182 members are expected to attend at least three times, 448 members are expected to attend 1 or 2 times and 90 members are expected to not attend.
M1, A1

d. Using a high power of T

In the long term 180 members are expected to attend at least three times a week.

Total 15 marks