2008 Further Mathematics Trial Examination 1 Suggested Solutions

VCE Further Mathematics Trial Examination 1

Suggested Solutions

© Kilbaha Multimedia Publishing 2008

Kilbaha Multimedia Publishing ABN 47 065 111 373 PO Box 2227 Kew Vic 3101 Australia Tel: (03) 9817 5374 Fax: (03) 9817 4334 <u>kilbaha@gmail.com</u> <u>http://kilbaha.googlepages.com</u>

2008 Further Mathematics Trial Examination 1 Suggested Solutions

IMPORTANT COPYRIGHT NOTICE

- This material is copyright. Subject to statutory exception and to the provisions of the relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Kilbaha Multimedia Publishing.
- The contents of this work are copyrighted. Unauthorised copying of any part of this work is illegal and detrimental to the interests of the author.
- For authorised copying within Australia please check that your institution has a licence from **Copyright Agency Limited**. This permits the copying of small parts of the material, in limited quantities, within the conditions set out in the licence.

Reproduction and communication for educational purposes The Australian Copyright Act 1968 (the Act) allows a maximum of one chapter or 10% of the pages of this work, to be reproduced and/or communicated by any educational institution for its educational purposes provided that educational institution (or the body that administers it) has given a remuneration notice to Copyright Agency Limited (CAL) under the Act.

For details of the CAL licence for educational institutions contact

CAL, Level 15, 233 Castlereagh Street, Sydney, NSW, 2000

Tel: (02) 9394 7600

Fax: (02) 9394 7601

Email: info@copyright.com.au

- Teachers and students are reminded that for the purposes of school requirements and external assessments, students must submit work that is clearly their own.
- Schools which purchase a licence to use this material may distribute this electronic file to the students at the school for their exclusive use. This distribution can be done either on an Intranet Server or on media for the use on stand-alone computers.
- Schools which purchase a licence to use this material may distribute this printed file to the students at the school for their exclusive use.
- The Word file (if supplied) is for use ONLY within the school
- It may be modified to suit the school syllabus and for teaching purposes.
- All modified versions of the file must carry this copyright notice
- Commercial use of this material is expressly prohibited

Core: Data analysis

Question 1C $\frac{10}{30} \times \frac{100}{1} = 33.3\%$ Question 3 BThis graph has an outlier from 90 to 100, and ithas a tail to the left. This means it is negativelyskewed with an outlier.	Question 2CThe median is 34The lower quartile is 22The upper quartile is 62The interquartile range is $62 - 22 = 40$ Question 4 B $8 + 10 + 2 = 20$
Question 5 E Both variables are numerical∴ scatter plot. One variable is time so the special type of scatter plot is a time series plot. Stem and leaf and box plot are used when one variable is numerical and one is categorical. A bar graph is used when both variables are categorical.	Question 6 D 68% would lie between $600 + 80$ and $600 - 80\therefore not AThe % greater than 520 would have to be greaterthan 50% since the mean is 600 \therefore not B440$ is 2 standard deviations below the mean so 2.5% are less than $440 \therefore$ not C 680 is 1 standard deviation above the mean so about 16% are greater than $680 \therefore$ not E 360 is 3 standard deviations below the mean so about 0.15% are less than $360 \therefore$ D
Question 7 B $Z = \frac{x - \overline{x}}{s}$ $-2 = \frac{60 - \overline{x}}{5}$ $-10 = 60 - \overline{x}$ $\overline{x} = 70$	Question 8 A When the residual plot has no clear pattern, then a linear relationship exists.

Core: Data analysis

Question 9 E	Question 10 A
$r^2 = 0.04$	English mark = $7.25 - 0.18 \times$ Maths mark
$r = \pm 0.2$	$7 = 7.25 - 0.18 \times M$
But r is negative because the gradient of the	-0.25 = -0.18M
regression line is negative $\therefore r = -0.2$	$M = \frac{-0.25}{-0.18} = 1.4$
Question 11 D	Question 12 A
There is only a seasonal pattern here, the graph	Coordinates of median of lower 4 points is
following a similar pattern in the 4 quarters of	(2.5,40)
each year.	Coordinates of median of upper 4 points is
	(10.5,35)
	$m = \frac{35 - 40}{10.5 - 2.5} = -0.625$
Question 13 D	
Using May, June, July and August	
$Mean = \frac{16+15+14+13}{4} = 14.5$	
Using June, July, August and September	
$Mean = \frac{15 + 14 + 13 + 12}{4} = 13.5$	
Centring these two means that would be either side of July, August and September	
4 – mean smoothed value centred at July	
$=\frac{14.5+13.5}{2}=14$	

Module 1 Number patterns

Question 1 D	Question 2 B
Each term in the sequence is found by adding 6	This is a geometric sequence with a common
to the term before it. Hence it is an arithmetic	ratio of 1
sequence with a common difference of 6	$\frac{1}{2}$
	a = 8, n = 12
	$t_n = ar^{n-1}$
	$t_{12} = 8\left(-\frac{1}{2}\right)^{11} = -\frac{1}{256}$
Question 3 C	Question 4 C
$t_7 = 3 \times t_6 + 4$	$t_4 = t_{1+3} = t_{1+2} + t_{1+1} + t_1 = t_3 + t_2 + t_1 = 1 + 1 + 1 = 3$
$8017 = 3 \times t_6 + 4$	$t_5 = t_{2+3} = t_{2+2} + t_{2+1} + t_2 = t_4 + t_3 + t_2 = 3 + 1 + 1 = 5$
$8013 = 3 \times t_6$	
$2671 = t_6$	
$t_6 = 3 \times t_5 + 4$	
$2671 = 3 \times t_5 + 4$	
$2667 = 3 \times t_5$	
$889 = t_5$	
Question 5 C	Question 6 F
4+6+8+	Value at beginning of first year, $2008 = 32,000$
Sum of Arithmetic Sequence	Value at beginning of second year = $32,000(0.85)$
n_{12}	Value at beginning of third year = $32,000(0.85)^2$
$S_n = \frac{1}{2} \left[2a + (n-1)a \right]$	Following the pattern
	Value at hosizating of Effth war = 22,000(0.85) ⁴
$S_{10} = \frac{1}{2} [8 + 9 \times 2] = 5 \times 26 = 130 \text{ m}$	value at beginning of fifth year = $32,000(0.85)^{\circ}$
	= \$16/04.20
	This is closest to \$16704

Module 1 Number patterns

Question 7 D	Question 8 A
Arithmetic Sequence.	
a = 85 d = -7 $t_n = a + (n-1)d = 85 + (n-1)(-7)$ Use sequence mode on graphics calculator and press $y =$ n(min) = 1 $\mu(n) = 85 + (n-1)(-7)$ $\mu(n \text{ min}) = 85$ Press second table and scroll down to get -48 This corresponds to $n = 20$	$\frac{72}{x} = \frac{x}{8}$ $x^{2} = 576$ $x = \pm\sqrt{576} = \pm 24$ Common ratio = $\frac{\pm 24}{8} = \pm 3$
Question 9 E An arithmetic sequence is linear ∴ not A	
The geometric sequence must have a negative common ratio because the terms go from positive to negative to positive \therefore not B or D	
Because the terms are getting closer to the <i>x</i> axis as <i>n</i> increases, then the common ratio must be a fraction.	

Question 1 D	Question 2 D
$\tan \theta = \frac{8}{2} = 2$	$\angle SOA = 90 - 25 = 65$
$\tan \theta = \frac{1}{4} - 2$	True bearing of $OA = 180 + 65 = 245^{\circ}$ T
$\theta = \tan^{-1}(2) = 63^{\circ}$	
Question 3 B	Question 4 D
$1 \int_{3} x \int_{12} x $	$x^{2} + x^{2} = 144$ $2x^{2} = 144$ $x^{2} = 72$ $x = \sqrt{72} = 8.485$ Perimeter = 8.485 × 2 + 12 Perimeter = 28.97
Question 5 C	Question 6 E
1	$\angle BAC = 180 - (135 + 26) = 19^{\circ}$
Area = $\frac{1}{2}bc\sin A$	$\underline{AC} = \underline{16}$
	$\sin 135^\circ$ $\sin 19^\circ$
Area = $\frac{1}{2} \times 6 \times 6 \times \sin 50^{\circ}$	$4C = \frac{16 \times \sin 135^{\circ}}{\cos 135^{\circ}} = 34.8$
$\Delta rea = 13.8$	$\sin 19^{\circ} = \frac{-54.8}{\sin 19^{\circ}}$
1100 15.0	

Module 2 Geometry and trigonometry

Module 3 Graphs and relations

Question 1 B	Question 2 E
Points are (3,0) and (0,-4)	When $x = 3800$, <i>y</i> is between 4000 and 4500
-4 - 0 - 4 - 4	∴\$4250
$m = \frac{1}{0-3} = \frac{1}{-3} = \frac{1}{3}$	
Question 3 B	Question 4 C
Original means $t = 0$	When Meg stops for lunch her speed would be
P = 0 + 50 = 50	$0 \therefore$ not A or D
	Meg rides home faster than she goes at first,
	\therefore not B
	The distance travelled is not 0 when Meg
Ornerting 5 A	stops for lunch : not E
Question 5 A The equation of the line is $y = r^{3}$	Question o B Using points $(0, 6)$ and $(4, 5)$
The equation of the line is $y = x - 3$	Using points $(0,0)$ and $(4,3)$
Area under or on this line is $y \le x - 3$	$m = \frac{5-6}{2} = -\frac{1}{2}$
This is the same as $y - x \le -3$	4 - 0 4
This is the same as $-y + x \ge +3$	Equation of this part of the function is
This is the same as $x - y \ge 3$	$y = -\frac{1}{4}x + 6 \qquad 0 \le x \le 4$
	Using points (14,0) and (4,5)
	5-0 5 1
	$m = \frac{1}{4 - 14} = -\frac{1}{10} = -\frac{1}{2}$
	Equation of this part of the function is
	$y = -\frac{1}{2}x + c$
	When $x = 14, y = 0$
	0 = -7 + c
	<i>c</i> = 7
	$y = -\frac{1}{2}x + 7$ $4 < x \le 14$

Module 3 Graphs and relations

Question 7 C	Question 8 D
When $x^2 = 16, y = 4$	In A, one of the lines has a gradient of 2 and the
1 2	other line has a gradient of -2 , \therefore not parallel
$\therefore y = -x^2$	In B, one of the lines has a gradient of 3 and the
	other line has a gradient of -3, not parallel
	In C, both lines are the identical same line, not
	In Δ one of the lines has a gradient of 2 and the
	other line has a gradient of -2 , \therefore not parallel
	In E, one of the lines has a gradient of $-\frac{1}{2}$ and
	the other line has a gradient of $-\frac{1}{2}$, not
Question 9 D	The other line has a gradient of 7 , \cdots not
Move line $Z = 0$ or $3x - y = 0$ keeping	parallel
the movement parallel to the line $Z = 0$.	In D, both lines have the same gradient of 3
Moving to the left passes through P last.	paranei.
Moving to the right passes through S last.	
P would give the minimum and S would	
give the maximum.	

Module 4 Business-related mathematics

Question 1 A	Question 2 E
$0.95^5 = 0.77$	$GST = \frac{118.75}{100} \times \frac{100}{100} = 12.5\%$
50000 - 0.77 is just a little less than 50000	950 1
\therefore not C	
50000 + 0.77 is just a little more than 50000	
\therefore not D	
$50000 \times (1.05)^5$ is larger than 50000	
∴ not B	
$0.95^5 = 0.77$	
$50000 - (1.05)^5$ is just a little less than 49000	
∴ not E	
0 1 1 0	
Question 3 D Total Amount Paid = $66 \times 30+396 = 2376$	Question 4 C
Interest = 2376 - 1200 - \$1176	$A = P\left(1 + \frac{r}{100}\right)$
interest 2570 1200 – \$1170	
	$A = 9400 \left(1 + \frac{7.2}{100}\right)^2 = 10802.33$
	I = 10802.33 - 9400 = \$1402.33
Ouestion 5 E	Question 6 C
Amount repaid = $139 \times 6 = 834$	Let amount invested = x
Interest = $834 - 800 = 34$, PRT
$_{p}$ 100 <i>I</i> 100×34 $_{9.5}$	$I = \frac{1}{100}$
$K = \frac{1}{PT} = \frac{1}{800 \times 0.5} = 8.5$	$740 - x - \frac{x \times 9.6 \times 5}{2}$
Effective interest rate = $\frac{2 \times 6}{2 \times 8} \times 8.5 = 14.6\%$	100
6+1	74000 - 100x = 48x
	74000 = 148x
	$x = \frac{74000}{500} = 500
	148
Question 7 E	
Annual Depreciation = $\frac{13500-920}{10} = 1258$	
%Depreciation = $\frac{1258}{13500} \times 100 = 9.3\%$	

Module 4 Business-related mathematics

Question 8 A	Question 9 B
Use TVM solver	Let original deposit be <i>x</i>
N = 120 I = 9.2 PV = 250000	After 5 years = $x \times (1.08)^5$ After 7 years = $x \times (1.08)^5 \times (1.06)^2 = 12000$ $x = \frac{12000}{5} = \$7268.60$
PMT =	$(1.08)^3 \times (1.06)^2$
FV = -250000	
P / Y = 12	
C / Y = 12	
End	
This gives $PMT = 1916.67$	
Total interest repayments = 120×1916.67	
Total interest repayments $= 230000.40$	
Total amount paid for property	
= 230000.40 + 250000	
=480000.40	
Profit = 485000 - 480000.40 = \$4999.60	

Module 5 Networks and decision mathematics

0 1 1 0	
Question 1 C	Question 2 D
This is the only graph where you cannot get to	Number of edges = $\frac{n \times (n-1)}{n-1} - \frac{20 \times 19}{n-190} - 190$
the bottom left point from any other point.	$\begin{array}{c} 1 \text{ value of of edges} \\ 2 \\ 2 \\ 2 \end{array}$
Ouestion 3 D	Ouestion 4 A
Sum of vertices = $6 \times 3 + 6 = 24$	P and R have more than 2 odd vertices \therefore no
24	Euler path and no Euler circuit
Number of edges = $\frac{24}{24}$ = 12	T has all even vertices : it has an Fuler circuit
2	O and S have 2 add vertices : they have an
	Q and S have 2 oud vertices they have an Euler noth and no Euler circuit
	Euler pain and no Euler circuit.
Question 5 B	Question 6 D
Only E goes to E so the number in the number in	
the 5 th row and 5 th column must be 1. A to A is	$A \bullet = A \bullet B \bullet$
0 so the number in the first row and first	5 5 5 8
oolumn is 0	F C
	3
	3+5+5+5+8=26
Ouestion 7 C	Ouestion 8 A
11 + 2 + 5 = 18	
	10 2 2 14
	Input Output
	9 • • 3
	5
	Maximum flow = minimum cut
	= 11 + 2 + 3 = 16
Question 9 E	
The critical path is ADFI : not A	
C can be delayed for 5 hours without delaying the finishing time \therefore not B	
C can be delayed for 5 hours without delaying the finishing time so delaying it by 6 hours will only	
delay the project by 1 hour \therefore not C	
E can be delayed for 1 hour without delaying the t	finishing time so delaying it by 6 hours will only
delay the project by 5 hours : not D	inising time so delaying it by o nours will only

Statement E is true.

Module 6 Matrices

Question 1 A	Question 2 C
Use calculator or	If the determinant $= 0$ then there is no unique
	solution.
$2 \ 2 \ 6 \ -6 \ -18$	For A, determinant = $1212 = 24$
$\begin{vmatrix} -3 \\ -4 \\ 1 \end{vmatrix} - \begin{vmatrix} -12 \\ -3 \end{vmatrix}$	For B, determinant = $-12 - 12 = -24$
	For D, determinant = $-3210 = 22$
	For E, determinant = $3 - 12 = 15$
	For C, determinant $=24-24=0$
Question 3 D	Question 4 D
$\begin{bmatrix} -2 & 0 \end{bmatrix} \begin{bmatrix} a & b \end{bmatrix} \begin{bmatrix} -2 & a & -b \end{bmatrix}$	From
$\begin{vmatrix} X = \begin{vmatrix} 2 & 0 \\ 4 & 2 \end{vmatrix} - \begin{vmatrix} a & 0 \\ b & a \end{vmatrix} = \begin{vmatrix} 2 & a & 0 \\ 4 + b & 2 & a \end{vmatrix}$	A B C
$\begin{bmatrix} 4 & -5 \end{bmatrix} \begin{bmatrix} -b & a \end{bmatrix} \begin{bmatrix} 4+b & -5-a \end{bmatrix}$	$4\begin{bmatrix}0.5 & 0.25 & 0.1\end{bmatrix}$
	A = 0.5 = 0.25 = 0.1
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	$C [0.3 \ 0.15 \ 0.55]$
Question 5 E	Question 6 A
Steady State = $T^{30}S_{o}$	det A
	$=3p \times s - 2q \times 4r$
$ = 0.4 \ 0.8 ^{50} 200 $	=3ps+8qr
$\begin{bmatrix} 0.6 & 0.2 \end{bmatrix} \begin{bmatrix} 300 \end{bmatrix}$	
	$\frac{1}{\det A} = \frac{1}{3ns+8ar}$
Use calculator to get	
	$A^{-1} = \frac{1}{2} \begin{bmatrix} s & 2q \\ s & s \end{bmatrix}$
	$3ps + 8qr \lfloor -4r 3p \rfloor$
Question 7 C	Question 8 E
$2x + 2y + 2z = 1 \equiv x + y + z = 0.5$	Columns must add to $1 \therefore$ not A, B or C
1x + 0y + 1z = -1	0.1 must be in the umbrella column and row
0x - 5y + 4z = 5	0.1 must be in the uniorena column and low.
Matrix is	
$\begin{bmatrix} 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} x \end{bmatrix} \begin{bmatrix} 0.5 \end{bmatrix}$	
$\begin{vmatrix} 1 & 0 & 1 \end{vmatrix} y = \begin{vmatrix} -1 \end{vmatrix}$	
$\begin{vmatrix} 1 & -5 & 4 \\ z & z \\ z & 5 \end{vmatrix}$	
Question 9 E	

B and *C* must be of the same order which would have to be 4×2

A multiplied by a 4×2 matrix would have to have 4 columns, so it must be a 3×4 matrix.

End of suggested solutions 2008 Further Mathematics VCE Trial Examination 1

Kilbaha Multimedia Publishing	Tel: (03) 9817 5374
PO Box 2227	Fax: (03) 9817 4334
Kew Vic 3101	kilbaha@gmail.com
Australia	http://kilbaha.googlepages.com