2009 Further Mathematics Trial Examination 2 Suggested Solutions

2009

VCE Further Mathematics Trial Examination 2

Suggested Solutions

© Kilbaha Multimedia Publishing 2009

Kilbaha Multimedia Publishing ABN 47 065 111 373 PO Box 2227 Kew Vic 3101 Australia Tel: (03) 9817 5374

Fax: (03) 9817 4334

kilbaha@gmail.com

http://kilbaha.googlepages.com

IMPORTANT COPYRIGHT NOTICE

- This material is copyright. Subject to statutory exception and to the provisions of the relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Kilbaha Multimedia Publishing.
- The contents of this work are copyrighted. Unauthorised copying of any part of this work is illegal and detrimental to the interests of the author.
- For authorised copying within Australia please check that your institution has a licence from **Copyright Agency Limited**. This permits the copying of small parts of the material, in limited quantities, within the conditions set out in the licence.

Reproduction and communication for educational purposes The Australian Copyright Act 1968 (the Act) allows a maximum of one chapter or 10% of the pages of this work, to be reproduced and/or communicated by any educational institution for its educational purposes provided that educational institution (or the body that administers it) has given a remuneration notice to Copyright Agency Limited (CAL) under the Act.

For details of the CAL licence for educational institutions contact

CAL, Level 15, 233 Castlereagh Street, Sydney, NSW, 2000

Tel: (02) 9394 7600

Fax: (02) 9394 7601

Email: info@copyright.com.au

- Teachers and students are reminded that for the purposes of school requirements and external assessments, students must submit work that is clearly their own.
- Schools which purchase a licence to use this material may distribute this electronic file to the students at the school for their exclusive use. This distribution can be done either on an Intranet Server or on media for the use on stand-alone computers.
- Schools which purchase a licence to use this material may distribute this printed file to the students at the school for their exclusive use.
- The Word file is for use ONLY within the school
- It may be modified to suit the school syllabus and for teaching purposes.
- All modified versions of the file must carry this copyright notice
- Commercial use of this material is expressly prohibited

a. $\frac{9}{13} \times 100 = 69.2\%$	
	(1 mark)
b.	с.
For T183 calculator enter data in stat edit in column L_1 . Go to stat calc, 1-var stats and enter L_1 . This gives standard deviation = 26.9	The Levi stewards have a much larger spread in their number of flying hours than the Hippo stewards.
(1 mark)	(1 mark)
d.	
Using calculator window from 1 b. gives $\bar{x} = 106$.	$1, Q_1 = 85, Q_3 = 129$
$x \pm 1.5IQR = 106.1 \pm 1.5 \times (129 - 85)$	
So values outside 40.1 and 172.1 are outliers.	
Hence, there are no outliers.	(1 mark)

Question 1 (continued)

f.

Hours spent flying by Hippo stewards is more negatively skewed than hours spent flying by Levi stewards.

(1 mark)

a.	
Advertising is the independent variable	(1 mark)
b.	c .
The variables are basically linearly related, and there are no outliers. (Only one of these points required for a mark)	For T183 calculator, enter data in stat edit in column L_1 and L_2 Go to stat calc, LinReg($ax+b$) and enter L_1 , L_2 to get
	$Sales = 8609.0 + Advertising \times 0.5$
(1 mark)	(1 mark)
d.	е.
Predicted Value = 0.5×6000 + 8609 = 11609 Residual = 12500–11609 = \$891	Using same calculator screen as for 2c. gives $r^2 = 0.98$
(1 mark)	(1 mark)
f.	g.
98% of the variation in sales income can be explained by the variation in advertising expenditure.	$20000 = 0.5 \times$ advertising + 8609 $11391 = 0.5 \times$ advertising Advertising = \$22782
(1 mark)	(1 mark)

a.					b.
Year	2005	2006	2007	2008	In autumn, sales are 10% higher than sales in
Average	162.5	163.75	163	164.25	an average season.
Autumn	172	170	171	174	
	162.5	163.75	163	164.25	
	=1.06	=1.04	=1.05	=1.06	
$SI = \frac{1.06 + 1}{1.06 + 1}$	-1.04 + 1.04 + 1.00	05+1.06			
=1.1				(1 mark)	(1 mark)

a.	b.
300,350,400 Arithmetic sequence a = 300, d = 50, n = 10 $t_{10} = 300 + 9 \times 50 = 750$ tonnes (1 mark)	$t_n = 300 + (n-1)50$ $t_n = 300 + 50n - 50 = 250 + 50n$ tonnes (1 mark)
с.	d.
This is an arithmetic sequence $S_n = \frac{n}{2} [2a + (n-1)d]$ $S_{20} = \frac{20}{2} [2 \times 300 + 19 \times 50]$ $S_{20} = 10 \times 1550 = 15500 \text{ tonnes}$	Use T1-83 graphics calculator in sequence mode. y = enter nMin = 1 $\mu_n = 300 + (n-1) \times 50$ $\mu(nMin) = 300$ Press 2nd table Scroll down to $n = 20$ This gives the value $\mu_n = 1250$ This is amount extracted in 20th year. Amount extracted in 21st year = $1250 - 75 = 1175$ tonnes
(1 mark)	(1 mark)

Question 1 (continued)

е.	f.	
Use graphics calculator in sequence	Use same calculator screen as for 1e.	
mode.	If first year is 2000 then 21 st . year is 2020.	
	This corresponds to $n = 1$ on calculator.	
y = enter	Cannot mine a negative amount of copper, So mining cases when $n = 16$ which is	
min = 1	So mining ceases when $n = 10$ which is year 2035	
$\mu_n = 1175 - (n-1)75$		
$\mu(nMin) = 1175$		
Press 2nd table		
Scroll down to find the first μ_n value		
which is less than 300		
This is 275 when $n = 13$		
Since $n = 1$ corresponds to year 21		
then $n = 13$ corresponds to year 33		
(1 mark)		(1 mark)

a.		b.
Geometric sequence a = 800, r = 1 - 0.085 = 0.915 $t_2 = ar = 800 \times 0.915 = 732$ tonnes		$S_{n} = \frac{a(1-r^{n})}{(1-r)}$ $S_{10} = \frac{800(1-0.915^{10})}{(1-0.915)} = 5540.24 \text{ tonnes}$
	(1 mark)	(1 mark)
c. $S_{\infty} = \frac{a}{(1-r)}$ $\Rightarrow S_{\infty} = \frac{800}{(1-0.915)}$ $\Rightarrow S_{\infty} = 9411.76 \text{ tonnes}$		d. Use calculator in sequence mode. Press $y = nMin = 1$ $\mu_n = 800 \times 0.915^{(n-1)}$ $\mu(nMin) = 800$ Press 2nd table Scroll down to find the first μ_n value which is less than 100 This is 94.885 when $n = 25$ So mine will close in 25th year of production
	(1 mark)	(1 mark)

Question 2 (continued)

е.	f.
Use calculator in sequence mode and keep same input as for d. Then add	Use same screen as e . When $n = 10$ <i>Acme</i> is 750 and <i>Beta</i> is 359.65 750 - 359.65 = 390.35 tonnes.
$v_n = 300 + (n-1)50$	
$\mu(nMin) = 300$	
Press 2nd table	
Scroll down to find the first v_n value	
which is greater than μ_n	
This is $550 > 513.09$ when $n = 6$	
So in the 6th year of production	
(1 mark)	(1 mark)

а.			b.	
$P_n = 1.15 P_{n-1}$	$P_0 = 250000$		$P_4 = 1.15^4 \times 250000$ = \$437251.56	
		(1 mark)	\$ 10 / <u>20</u> 1.0 0	(1 mark)
с.				
$t_4 = 1100 + 700 = 1$	1800			
$t_5 = 1800 + 1100 =$	2900			
$t_6 = 2900 + 1800 =$	= 4700 m.			
				(1 mark)

Module 2 Geometry and trigonometry

Module 2 Geometry and trigonometry

Question 2

a.	
	$A_1 = 6 \times 7 = 42$
7	$A_2 = \frac{43 \times 5}{2} = 107.5$
	$2 = 43 \times 1 - 43$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$n_3 = -3 \times 1 = -3$ Total area = 42 + 107.5 + 42 = 102.5 m ²
	10tat atea - 42 + 107.3 + 43 = 192.3 III
50m	
L.	(1 mark)
D.	c.
Volume = Area of base \times height	Area to be tiled = $2(12 \times 8) + 2(50 \times 8) + (12 \times 50)$
Volume = $192.5 \times 12 = 2310 \text{ m}^3$	Area to be tiled =1592 m^2
(1 mork)	
(1 mark)	(1 mark)
d.	е.
1502×100×100	52100
Number tiles = $\frac{1592 \times 100 \times 100}{300}$ = 53066.67	Number of packs = $\frac{35100}{1000}$ = 53.1
Need to buy 53100 tiles.	Need 54 packs
	$Cost = 120 \times 54 = 6480
(1 mork)	(1
(1 mark)	(1 mark)
f.	
Area under water	
$= 2(192.5) + (6 \times 12) + (1 \times 12) + (50 \times 12)$	
Area under water =1069	
% under water = $\frac{1069}{1592} \times 100 = 67.1\%$	
(1 mark) for Area under water	
(1 mark) for percentage.	(2 marke)
	(2 marks)

© Kilbaha Multimedia Publishing 2009

http://kilbaha.googlepages.com

Module 2 Geometry and trigonometry

Question 3

a.	b.
From 2b. Vol. of water in pool = 2310	$V = \pi r^2 h$
7.5 m ³ in 1 min	$50 = \pi r^2 4.9$
2310 m ³ in $\frac{2310}{7.5}$ = 308 mins = $\frac{308}{60}$ = 5.1 hrs.	$r^2 = \frac{50}{4.9\pi}$
	$r = \sqrt{\frac{50}{4.9\pi}} = 1.8$
	$d = 2 \times 1.8 = 3.6 \text{ m}$
(1 mark)	(1 mark)

Question 1

a.	b.
80×100 = \$8000	75 > 50 C = 39 + 0.1×75 = \$46.50
(1 mark)	(1 mark)
c.	<u> </u>
$p = \frac{100}{100} = 1.6$ 1.6 is between 1.5 and 4	
$C = 3 + 2 \times 1.6 = 6.20	(1 mark)

© Kilbaha Multimedia Publishing 2009

Question 1 (continued)

a.		b.
C = 4245 + 5.40x		S = 62x
	(1 mark)	(1 mark)
с.		d.
4245 + 5.4x = 62x		P = SP - CP
56.6x = 4245		P = 62x - 4245 - 5.4x
<i>x</i> = 75		P = 56.6x - 4245
75 shirts must be sold to break even.	(1 1)	
	(1 mark)	(1 mark)
e. $56.6x - 4245 = 25639.80$ $56.6x = 29884.80$		
x = 528		
		(1 mark)

Module 4 Business-related mathematics

Question 1

a. Tax paid = 18000 + 0.40(8000) = \$21,200	
	(1 mark)
b. i.	b. ii.
Last year paid $0.15(33000 - 6000) = 4050$ This year pays $4200 + 0.30 \times 4000 = 5400$ Extra tax paid = $5400 - 4050 = 1350	Last year take home = $33000 - 4050 = 28950$ This year take home = $38000 - 5400 = 32600$ Extra take home this year = $32600 - 28950 = 3650$ Gets to actually take home \$3650 more.
(1 mark)	(1 mark)

a.	b.
$\frac{20}{100} \times 7200 = \1440	Amount for work = $7200 \times \frac{100}{110} = 6545.45$ GST = $7200 - 6545.45 = 654.55
(1 mark)	(1 mark)
с.	d.
Amount repaid = 475.20 × 20 = \$9504	Interest paid = $9504 - (7200 - 1440) = 3744$
	(1 mark)
	$R = \frac{100I}{PT} = \frac{100 \times 3744}{(7200 - 1440) \times 5} = 13\%$
(1 mark)	(1 mark)

Module 4 Business-related mathematics

Question 3

а.	b.
Use graphics calculator Press Apps Finance Enter TVM Solver Enter N = 120 I = 6.5 PV = 25000 PMT = FV = 0 P/Y = 12 C/Y = 12 End Put surger on PMT and group alpha calculation	Total amount repaid = 120 × 283.86994 =34064.39 Interest = 34064.39 – 25000 = \$9064.39 =\$9064 to nearest dollar.
Put cursor on <i>PM1</i> and press alpha solve.	
PMT = \$283.87	
(1 mark)	(1 mark)
c.	
Use graphics calculator Press Apps Finance Enter TVM Solver Enter N = 60 I = 6.5 PV = 25000 PMT = -283.86994 FV = P / Y = 12 C / Y = 12 End Put cursor on <i>PMT</i> and press alpha solve. FV = \$14508.21818 (1 mark)	Again use graphics calculator Press Apps Finance Enter TVM Solver Enter N = I = 6.5 PV = 14508.21818 PMT = -400 FV = 0 P/Y = 12 C/Y = 12 End Put cursor on <i>PMT</i> and press alpha solve. N = 40.4911 months = 3.4 years (1 mark)
()	(1 mark)

© Kilbaha Multimedia Publishing 2009

Module 4 Business-related mathematics

a.	b.
$0.15 \times 100000 = \$15000$	Depreciation = $25000 - 5000 = 20000$
	$20000 = x \times 0.15$
	$x = \frac{20000}{0.15} = 133333 \text{ km}.$
(1 mark)	(1 mark)
c.	
With calculator in function mode enter	
$y = 25000(0.92)^x$	
Press 2nd table and scroll down to $y = 11804$	
This corresponds to $x = 9$	
Hence, car will be valued at less than	
\$12000 after 9 years.	
	(1 mark)

Module 5 Networks and decision mathematics

Question 1

http://kilbaha.googlepages.com

Module 5 Networks and decision mathematics

© Kilbaha Multimedia Publishing 2009

Module 5 Networks and decision mathematics

Question 3

a.

Activity	Immediate Predecessor	Earliest Starting Time (days)
А	None	0
В	А	5
С	A,E	24
D	В	11
E	A, D	19
F	C, E, D	37

(3 marks)

(1 mark) for each of the three values

b.	с.
Critical path is the longest path. A $-$ B $-$ D $-$ E $-$ C $-$ F $-$ G	There is no slack time for E because E lies on the critical path.
(1 mark)	(1 mark)
d. i.	d. ii.
There is now a new critical path: A - E - C - F - G This takes 35 days instead of the original 38 days, so 3 days are saved.	He saves \$3000 by saving 3 days but he has to pay 4 workers \$200 per day for 1 day, so he would save $3000-800 = 2200 . It is worth doing.
(1 mark)	(1 mark)

Module 6 Matrices

Module 6 Matrices

Question 2

$\begin{bmatrix} \mathbf{a.} \\ \begin{bmatrix} 4.80 \\ 5.00 \\ 5.20 \end{bmatrix}$	(1 mark)
b. Let \$x be the price per kilogram of raisins Let \$y be the price per kilogram of sultanas Let \$z be the price per kilogram of currants $\begin{bmatrix} 0.4 & 0.3 & 0.3 \\ 0.5 & 0.3 & 0.2 \\ 0.4 & 0.2 & 0.4 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 4.80 \\ 5.00 \\ 5.20 \end{bmatrix}$	c. Use graphics calculator. Enter $\begin{bmatrix} 0.4 & 0.3 & 0.3 \\ 0.5 & 0.3 & 0.2 \\ 0.4 & 0.2 & 0.4 \end{bmatrix}$ in A Enter $\begin{bmatrix} 4.80 \\ 5.00 \\ 5.20 \end{bmatrix}$ in B $\begin{bmatrix} x \\ y \\ z \end{bmatrix} = A^{-1}B = \begin{bmatrix} 7.20 \\ 1.20 \\ 5.20 \end{bmatrix}$ 1 kg. raisins cost \$7.20, 1kg. sultanas cost \$1.20, 1 kg currants cost \$5.20
For correct matrices (1 mark)	(1 mark)
For correct equation (1 mark) d. $X = Q - P$ $X = \begin{bmatrix} 0.1 & 0.2 & 0.7 \\ 0.5 & 0.3 & 0.2 \\ 0.4 & 0.2 & 0.4 \end{bmatrix} - \begin{bmatrix} 0.4 & 0.3 & 0.3 \\ 0.5 & 0.3 & 0.2 \\ 0.4 & 0.2 & 0.4 \end{bmatrix}$ $= \begin{bmatrix} -0.3 & -0.1 & 0.4 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ (1 mark)	e. X says that the mixture in Home brand is changed by increasing the currants by 0.4 kg and decreasing the raisins and sultanas by 0.3 kg and 0.1 kg respectively.
(1 mark)	(1 mark)

© Kilbaha Multimedia Publishing 2009

http://kilbaha.googlepages.com

Module 6 Matrices

Question 3

e.

Let number of people who bought blue, cheddar, brie and gouda last week be x, 3x, 2x and x, respectively.

$$\begin{bmatrix} 0.1 & 0.2 & 0.2 & 0.9 \end{bmatrix} \begin{bmatrix} x \\ 3x \\ 2x \\ x \end{bmatrix} = 0.1x + 0.6x + 0.4x + 0.9x = 2x = 800$$

x = 400

Total number to buy four cheeses = x + 3x + 2x + x = 7x $7x = 7 \times 400 = 2800$

Г

(1 mark)

© Kilbaha Multimedia Publishing 2009

End of suggested solutions 2009 Further Mathematics VCE Trial Examination 2

Kilbaha Multimedia Publishing	Tel: (03) 9817 5374
PO Box 2227	Fax: (03) 9817 4334
Kew Vic 3101	<u>kilbaha@gmail.com</u>
Australia	http://kilbaha.googlepages.com