The Mathematical Association of Victoria Trial Examination 2011 Further Mathematics Exam 2--SOLUTIONS

SECTION A: Core--Data analysis

Question 1

a.	The median is the middle value when the data is ordered from smallest to largest.	
	There are 12 data points, so the median will be the $\frac{12+1}{2} = 6.5^{\text{th}}$ score.	
	Taking the mean of the 6 th and 7 th scores give $\frac{0.886 + 0.861}{2} = 0.874$	A1
b.	$\frac{5}{12} \times 100\% = 42\%$	A1
0	Panga - highest value lowest value	

c. Range = highest value – lowest value = 0.952 - 0.833= 0.119 A1

Question 2

- **a** i. US dollar: min = 0.833, $Q_1 = 0.841$, median = 0.874, $Q_3 = 0.917$, max = 0.952 A1
- **a** ii. Outlier if less than $Q_1 = 1.5$ IQR, or greater than $Q_3 + 1.5$ IQR, i.e. < 0.727 or >1.031There are no outliers present in the data

b. The boxplot of the Australian dollar relative to the Japanese yen has a slight negative skew with an outlier at 219.70.
 A1 (Accept approximately symmetrical with an outlier at 219.70)

a. The regression line drawn on the time series plot should pass through the points (0, 0.946) and (12, 0.826). Any two correct points on the line are acceptable.

b. In November 1984 the value of the Aust dollar relative to the U.S. dollar was 86 cents. Residual = actual value – predicted value = $0.861 - [0.946 - 0.01 \times 11]$ = 0.861 - 0.836- 0.025

$$= 0.025$$
 A1
Month for July 1985: $12 + 7 = 19$ A1
Aust dollar value = $0.946 - 0.01 \times 19$
= 0.756 A1

- d. The linear model assumes the value of the Australian dollar relative to the U.S. dollar will continue to fall at a constant rate. Extrapolating outside the data set is not appropriate. Predicting long term values with this model will be very unreliable.
 A1
- **e.** *r* = −0.834

c.

The coefficient of determination $r^2 = 0.695$ (accept $r^2 = (-0.834)^2 = 0.696$) 69.5% (or 69.6%) of the variation in the value of the Australian dollar can be explained by the variation in the month of the year. A1

- 0.96 0.94 0.92 0.90 Value of Aust dollar relative to U.S. dollar 0.88 0.86 0.84 0.82 2 0 4 6 8 10 12 Month of 1984
- **f.** Three median smoothing shown with cross x in graph below

Module 1: Number patterns

Question 1

a. Arithmetic sequence:
$$a = 11, d = 2, t_n = a + (n-1)d$$

 $t_{12} = 11 + 11(2) = 33$ A1

b. Arithmetic series:
$$S_n = \frac{n}{2} [2a + (n-1)d]$$

 $S_{15} = \frac{15}{2} [22 + (14) 2] = 375$
A1

c i.
$$t_n = 55 \quad 11 + (n-1)2 = 55$$

 $2(n-1) = 44$
 $n = 23$ **A1**

c ii.
$$S_{23} = \frac{23}{2}(11+55)$$
 OR $S_{23} = \frac{23}{2}[22+(23-1)2]$
= 759 = 759 A1

Question 2

a.
$$r = \frac{2.2}{2} = 1.1$$
 A1

b.
$$t_7 = 2 \times 1.1^6 = 3.5$$
 metres **A1**

c. Geometric series:
$$S_n = \frac{n(r-3)}{r-1}$$

 $\frac{2(1.1^n - 1)}{1.1 - 1} = 150$ M1
 $2(1.1^n - 1) = 15$
 $1.1^n - 1 = 7.5$
 $1.1^n = 8.5$
 $n = 22.45$ using the calculator

There are 22 trees planted in a row that is 150 metres long. A1

a.

b.

t_0	10
t_1	$1.1 \times 10 + 5 = 16$
t_2	$1.1 \times 16 + 5 = 22.6$
t_3	29.86
t_4	37.85
<i>t</i> ₅	46.63
t_6	56.29
t_7	66.92
<i>t</i> ₈	78.62
<i>t</i> 9	91.48

 $t_5 = 46.63 \text{ kg}$

$$t_5 = 46.63 \text{ kg}$$

$$\frac{t_1}{t_0} = \frac{16}{10} = 1.6$$

$$\frac{t_2}{t_1} = \frac{22.6}{16} = 1.41$$
M1

Since $\frac{t_1}{t_0} = 1.6 \neq 1.41 = \frac{t_2}{t_1}$ then sequence is not geometric (values must be shown)

c. From table $t_8 = 78.62$ and $t_9 = 91.48$ Nine years after "first yield" the average yield will exceed 80 kg per tree. A1

d.
$$t_6 - t_5 = 56.29 - 46.63 = 9.66 \text{ kg}$$
 A1

e.
$$t_n = 5 \times 1.3^n$$
 A1

f. The Corregiola olive trees starts with a higher yield, but the yield of the Paragon olive trees increases at a faster rate.

The greater increase in the yield of the Paragon olive trees is due to the coefficient of p_n being 1.3, whereas for the Corregiola olive trees the coefficient of t_n is 1.1. A1 A1

Paragon yield exceeds Corregiola yield after 14 years. g.

Years after first	Corregiola	Paragon
yield (<i>n</i>)	$t_{n+1} = 1.1t_n + 5$	$p_{n+1} = 1.3 p_n$
0	10	5
1	16	6.5
2	22.6	8.45
3	29.86	10.99
4	37.85	14.28
5	46.63	18.56
6	56.29	24.13
7	66.92	31.37
8	78.62	40.79
9	91.48	53.02
10	105.62	68.93
11	121.18	89.61
12	138.3	116.49
13	157.13	151.43
14	177.85	196.87

Module 2 **Geometry and Trigonometry**

Question 1 10° a. A1 $\sin(10^\circ) = \frac{2000}{PA}$ b. $PA = \frac{2000}{\sin(10^\circ)} = 11\ 517.54$ PA = 11518 metres A1 c. i. Horizontal distance from A to $P = \frac{2000}{\tan(10^\circ)} = 11342.56$ metres

$$AM = 11\,342.56 - 3000 = 8343 \text{ m}$$
 M1

•

c. ii.
$$\tan \theta = \frac{2000}{8342.56}$$

 $\theta = 13.5^{\circ}$ A1

Question 2

a. i. Using the cosine rule:
$$\cos(\angle AOB) = \frac{OA^2 + OB^2 - AB^2}{2 \times OA \times OB}$$

 $\angle AOB = \cos^{-1}\left(\frac{32^2 + 45^2 - 67^2}{2 \times 45 \times 32}\right)$ M1
 $\angle AOB = 120^{\circ}$
a. ii. Area = $\frac{1}{2} \times OA \times OB \sin(\angle AOB)$
Area = $\frac{1}{2} \times 32 \times 45 \times \sin(120^{\circ})$

$$Area = 623.5 \text{ km}^2$$

b. Bearing of *B* from
$$O = 360^{\circ} - 130^{\circ} = 230^{\circ}$$

c. Finding
$$\angle OAB$$

- = ----OB AB Using the sine rule: $\sin(\angle OAB) \quad \sin(\angle AOB)$ 45 67 $\sin(\angle OAB) \quad \sin(120^\circ)$ $\angle OAB = 35.6^{\circ}$ A1 130°**¢** 110° 120 45 km 35.6 50° 67 km B

Bearing of *B* from $A = 360^{\circ} - (35.6^{\circ} + 70^{\circ}) = 254.4^{\circ}$

M1

di.	$AB^{2} = OA^{2} + OB^{2} - 2 \times OA \times OB\cos(\angle AOB)$	0 ● 32 km	
	$AB^{2} = 32^{2} + 32^{2} - 2 \times 32 \times 32 \cos(120^{\circ})$	32 km 120°	
	$AB = \sqrt{3072}$	450° 30° 4	
	AB = 55.4 metres	30°	A1
	04 0B 201	B	

d. ii.
$$OA = OB = 32 \text{ km}$$

Triangle OAB is isosceles
 $\angle OBA = 30^{\circ}$
Bearing of A from B is $(50^{\circ} + 30^{\circ}) = 80^{\circ}$ A1

a.	Radius of oil barrel = 50 cm	
	Cylinder: $V = \pi r^2 h$	
	$V = \pi \times 50^2 \times 85$	M1
	$V = 667588.4 \mathrm{cm}^3$	
	V = 667.5884 litres	
	The cylindrical oil barrel contains 668 litres of oil when full	A1

b. Containers *X* and *Y* are similar in shape, therefore the corresponding length dimensions are in the same ratio.

Volume container $Y = 3.375 \times$ Volume container X

- $\Rightarrow \qquad \text{Length container } Y = \sqrt[3]{3.375} \times \text{Length container } X \qquad \text{M1}$ Length container $Y = 1.5 \times \text{Length container } X$
- $\Rightarrow \qquad \text{Surface Area container } Y = 1.5^2 \times \text{Surface Area container } X \\ 13.95 = 1.5^2 \times \text{Surface Area container } X \end{aligned}$
- $\Rightarrow \qquad \text{Surface Area container } X = \frac{13.95}{1.5^2} = 6.2 \text{ m}^2 \qquad \qquad \textbf{A1}$

Module 3: Graphs and relations

Question 1

C		
a.	$0 \le x \le 15$	
	$0 \le y \le 8$	A1
	Accept $x \le 15$ and $y \le 8$	

- **b.** Both lines correctly labelled with the equation
- c. Line 5x + 12y = 120 drawn with intercepts (0, 10) and (24, 0) A1 or, the points of intersection (4.8, 8) and (15, 3.75) marked

Feasible region shaded

d. Objective to maximize = 4x + 10y

Point	Objective $= 4x + 10y$	Number of people
(4.8, 8)	$4 \times 4.8 + 10 \times 8 = 99.2$	99
(15, 3.75)	$4 \times 15 + 10 \times 3.75 = 97.5$	97
(0, 8)	$4 \times 0 + 10 \times 8 = 80$	80
(15, 0)	$4 \times 15 + 10 \times 8 = 60$	60

The greatest number of people Millie can assist is 99.

This will occurs with 4.8 small tables and 8 large tables as shown by the calculations above. It assumes she has a fraction of a table which would be possible in a restaurant.

M1

A1

$$5 = \frac{k}{120} \qquad \Rightarrow \quad k = 600 \qquad A1$$

Manager's equation is $n = \frac{600}{t}$

When
$$t = 75$$
, $n = \frac{600}{75} = 8$ staff A1

Question 3

d.

a.
$$C = 2000 + 35x$$
 A1

b. The gradient of the line represents the cost to the restaurant per person. The gradient is \$35. If 10 extra people attend the additional cost to the restaurant will be $10 \times 35 = 350 A1

c. Revenue =
$$75x$$
 A1
Breakeven point occurs when Revenue = Costs
 $75x = 2000 + 35x$
 $40x = 2000$
 $x = 50$
Fifty people would need to attend the function for the restaurant to breakeven. A1

- Profit = Revenue Costs P = 75x - (2000 + 35x) 3480 = 40x - 2000 $x = \frac{5480}{40} = 137$ people
- e. Let the *m* be the amount charged per person to make a profit of at least \$4000 P = mx - (2000 + 35x)When x = 125 $P = 125m - (2000 + 35 \times 125)$ P = 125m - 6375 $125m - 6375 \ge 4000$ M1 $125m \ge 10375$ $m \ge 83$ The lowest charge is \$83 per person for profit of at least \$4000
 A1

Module 4 Business related mathematics

Question 1

a.	Value = $490\ 000 \times (1.06)^3 = 583\ 597.84$	
	Value = \$583 600	A1
b.	700 000=490 000 × $(1.06)^n$	M1
	n = 6.1 years	A1
c.	Capital Gains Tax = $0.45 \times \$150\ 000 = \$67\ 500$	A1
Quest	ion 2	
a i.	Finance Solver N = 60 I(%) = 10.4 $PV = -35\ 000$ Pmt = ? FV = 0 PpY = 12 CpY = 12 Monthly Payment is \$750.55	A1
a ii	Total Interest = $750.55 \times 60 = 35.000$	
a. 11.	Total Interest = $\$10\ 033$	M1
b.	If the monthly payment is \$800 per month for two years. Finance Solver N = 24 I(%) = 10.4 $PV = -35\ 000$ Pmt = 800 FV = ? PpY = 12 CpY = 12 Amount outstanding after two years is \$21\ 812.91 If the monthly payment is reduced to \$600 for another three years	A1
	Finance Solver N = 36 I(%) = 10.4 PV = -21812.91 Pmt = 600 FV = ? PpY = 12 CpY = 12 Amount outstanding at the end of five years is \$4537.66 \$4538 correct to the nearest dollar	Δ1
	\$4558 COLLECT TO THE HEATEST GOLLAT	AI

In Flat Rate Depreciation, the annual depreciation is constant.	
This will be a percentage of the initial value of the item.	A1
In Reducing Balance Depreciation, the annual depreciation is a percentage of the current value	
of the item. The depreciation decreases from one year to the next.	A1

Question 4

a.	Annual flat rate depreciation = 15% of $2000 = 3000$	A1
b.	Depreciation over four years = $3 \times \$3000 = \9000	A1
c.	Value of tractor after six years = $2000 - 6 \times 3000 = 2000$	A1

Question 5

Bank statement for October

Date	Transaction	Debit	Credit	Balance
01 October	OPENING BALANCE			\$1677.76
07 October	Cheque		\$520.00	\$2197.76
15 October	EFT		\$1359.05	\$3556.81
24 October	Automatic payment	\$1506.93		\$2049.88
31 October	CLOSING BALANCE			\$ 2049.88

Work backwards to find missing balances

Minimum Monthly balance is \$1677.76

A1

Interest = $\frac{1}{12} \times \frac{3.75}{100} \times 1677.76$ Interest = \$5.24

Module 5: Networks and decision mathematics

Question 1

b. 12+6+9+10+8+10+7+5=67Minimum cost is \$67 000 A1

2011 MAV FURTHER MATHS EXAM 2 - SOLUTIONS

Task	Time to complete task (Days)	Earliest Start Time (Days)	Latest Start Time (Days)
G	3	5	7
L	3	10	13
М	3	13	13
X	1	7	10

c.	Critical path is ADHKM	A1

- d. Earliest completion time: 3+4+3+3=16
- e. Float = latest start time – earliest start time For activity F: 9-5=4

Question 4

There is little point in reducing the completion time of task J because it is not on the critical a. path either before or after reducing tasks *H* and *K*. By either reducing H by 1 day and K by 1 day, or, K by 2 days the minimum completion time for the project will be 14 days. However, it costs more per day to reduce task K than task H. The minimum cost will be \$3000 A1

This minimum cost occurs when *H* is reduced by 1 day and *K* is reduced by 1 day. b. The completion time of task J will not be reduced. A1

A1

A1

Module 6: Matrices

ſ	3.95	В	
a.	6.50	R	A1
	10.00	P	

b.
$$\begin{bmatrix} 3 & 1 & 5 \end{bmatrix}$$
 A1

c. i.
$$\begin{bmatrix} 3 & 1 & 5 \end{bmatrix} \begin{bmatrix} 6.50 \\ 10.00 \end{bmatrix}$$
 M1

c. ii. [68.35] Must be written as matrix **A1**

Question 2

a.	Joan bought the most punnets of seedlings.	
	In total she bought 7 punnets of seedlings (3 bean and 4 lettuce)	A1
b.	The element in the second row and third column of the matrix is zero. This means Doris bought no punnets of lettuce seedlings.	A1

c. i.

[1	1	1	-1	20	-4	-5]
1	5	0	=	-4	1	1
3	0	4			3	4
The missing element is 20.						

c. ii. Solving the matrix equation to find the cost of one punnet of each type of seedling.

$$\begin{bmatrix} b \\ t \\ l \end{bmatrix} = \begin{bmatrix} 20 & -4 & -5 \\ -4 & 1 & 1 \\ -15 & 3 & 4 \end{bmatrix} \begin{bmatrix} 16.95 \\ 37.85 \\ 36.45 \end{bmatrix} = \begin{bmatrix} 5.35 \\ 6.50 \\ 5.10 \end{bmatrix}$$
A1

Kate's seedling purchase can be written as $\begin{bmatrix} 3 & 2 & 1 \end{bmatrix}$

The total cost will be
$$\begin{bmatrix} 3 & 2 & 1 \end{bmatrix} \begin{bmatrix} 5.35 \\ 6.50 \\ 5.10 \end{bmatrix} = \begin{bmatrix} 34.15 \end{bmatrix}$$
 A1

Kate pays \$34.15 for her seedlings.

a. 20%

 $\begin{bmatrix} 0 \cdot 3 & 0 \cdot 4 & 0 \cdot 2 \\ 0 \cdot 4 & 0 \cdot 5 & 0 \cdot 7 \\ 0 \cdot 3 & 0 \cdot 1 & 0 \cdot 1 \end{bmatrix}^{3} \begin{bmatrix} 0 \\ 0 \\ 1000 \end{bmatrix} = \begin{bmatrix} 336 \\ 492 \\ 172 \end{bmatrix} N$

336 of these gardeners will prefer to use organic fertilizer in three year's time.

and

$$\begin{bmatrix} 0 \cdot 3 & 0 \cdot 4 & 0 \cdot 2 \\ 0 \cdot 4 & 0 \cdot 5 & 0 \cdot 7 \\ 0 \cdot 3 & 0 \cdot 1 & 0 \cdot 1 \end{bmatrix}^{20} \begin{bmatrix} 0 \\ 0 \\ 1000 \end{bmatrix} = \begin{bmatrix} 333.\dot{3} \\ 500 \\ 166.\dot{6} \end{bmatrix} N \quad \text{and}$$
$$\begin{bmatrix} 0 \cdot 3 & 0 \cdot 4 & 0 \cdot 2 \\ 0 \cdot 4 & 0 \cdot 5 & 0 \cdot 7 \\ 0 \cdot 3 & 0 \cdot 1 & 0 \cdot 1 \end{bmatrix}^{21} \begin{bmatrix} 0 \\ 0 \\ 1000 \end{bmatrix} = \begin{bmatrix} 333.\dot{3} \\ 500 \\ 166.\dot{6} \end{bmatrix} N$$
The steady state matrix is
$$\begin{bmatrix} 333.\dot{3} \\ 500 \\ 166.\dot{6} \end{bmatrix} N$$
A1

Question 4

$$T = \begin{bmatrix} 0.6 & 0.5 \\ 0.4 & 0.5 \end{bmatrix}$$

$$D_2 = TD_1 + \begin{bmatrix} 4 \\ 4 \end{bmatrix} \implies D_2 = \begin{bmatrix} 0.6 & 0.5 \\ 0.4 & 0.5 \end{bmatrix} \times \begin{bmatrix} 10 \\ 20 \end{bmatrix} + \begin{bmatrix} 4 \\ 4 \end{bmatrix} = \begin{bmatrix} 20 \\ 18 \end{bmatrix} H$$

$$D_3 = TD_2 + \begin{bmatrix} 4 \\ 4 \end{bmatrix} \implies D_2 = \begin{bmatrix} 0.6 & 0.5 \\ 0.4 & 0.5 \end{bmatrix} \times \begin{bmatrix} 20 \\ 18 \end{bmatrix} + \begin{bmatrix} 4 \\ 4 \end{bmatrix} = \begin{bmatrix} 25 \\ 21 \end{bmatrix} H$$

$$L$$
A1

On the third weekend 25 people will attend the Horticulture demonstration

A1

A1

END OF SOLUTIONS