FURTHER MATHEMATICS

Written Examination 2

(TSSM's 2015 trial exam updated for the current study design)

SOLUTIONS

Core - Data Analysis

Question 1

a. Range = 42 - 7 = 35 hours

1 mark

b.
$$Q_1 = 12.5, Q_3 = 23.5, IQR = 11$$

 $Q_1 - 1.5 \times IQR = -4, Q_3 + 1.5 \times IQR = 40$

Hence, 41 and 50 are outliers.

The data is positively skewed with outliers (41 and 50)

2 marks

$$\mathbf{c.} \quad \frac{13}{23} \times 100 = 56.5 \%$$

1 mark

d.
$$\bar{x} = 24.48 \text{ hours}$$

1 mark

©TSSM 2015 Page 1 of 12

Question 2

a. Percentage of population living in towns.

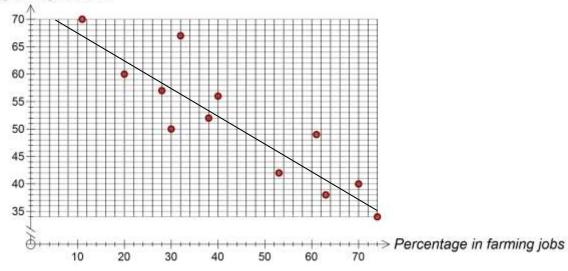
1 mark

There is a strong negative linear relationship between the percentage of population living in towns and the percentage of population in farming jobs.

1 mark

b. Slope – the percentage of population living in towns decreases by 0.4982 with every percent increase in population in farming jobs.

Vertical Intercept -72.8384% of population was living in the towns when there was no farming job.


2 marks

c.
$$r^2 = 0.8043$$

80.43%

1 mark

d.

Pecentage living in towns

1 mark

e.

Predicted value =
$$72.8384 - 0.4982 \times 74 = 35.9716$$

Actual value (from graph) =
$$34$$

Residual =
$$34 - 35.9716 = -1.97$$

1 mark

©TSSM 2015 Page 2 of 12

Question 3

a. $\log_{10}(\text{no of bacteria})$.

1 mark

b. Use CAS to generate the lists.

 log_{10} (Number of bacteria) = $4.5941 - 0.0949 \times Day$ number.

2 marks

Total 15 marks

Core - Recursion and financial modelling

Question 4

a. Increase = $45 \times 0.1 = 4.50

1 mark

b. Price = $45 \times 1.1^3 = 59.90

1 mark

c. $P_n = 1.1 P_{n-1}$, $P_0 = 45$

2 marks

d. 2019. Generate the list on CAS.

2 marks

Question 5

a. Interest = 116395 - 75000 = \$41395

1 mark

b.

$$116395 = 75000 \left(1 + \frac{r}{400}\right)^{24}$$
 or use TVM Solver $r = 7.4\%$

1 mark

©TSSM 2015 Page 3 of 12

$$\mathbf{c.} \quad 116395 \left(1 + \frac{7.8}{1200} \right) + 480 = \$117632$$

1 mark

d. Use TVM Solver or generate sequence on CAS. \$131 776

2 marks

Question 6

a. Use TVM Solver - N = 36, I = 6.95, PV = 200000, Pmt = -1350, PpY = 12, CpY = 12 \$192352.48

2 marks

b. Use TVM solver28 years and 3 months.

2 marks

Total 15 marks

©TSSM 2015 Page 4 of 12

Module 1: Matrices

Question 1

a. 3×4

1 mark

b. 3

1 mark

c. There were 20 pasties sold on Tuesday.

1 mark

d. The number of columns in matrix C is the same as the number of rows in matrix N.

1 mark

e. $CN = \begin{bmatrix} 99.70 & 75.50 & 40.90 & 85.80 \end{bmatrix}$

This matrix represents the sales collected on each of the four days.

2 marks

Question 2

a.
$$T = \begin{bmatrix} 0.90 & 0.15 & 0.25 \\ 0.075 & 0.80 & 0.25 \\ 0.025 & 0.05 & 0.5 \end{bmatrix}$$

2 marks

b. 15%

1 mark

c. Need to consider only those people who change from C, not those who stay shopping at C the following week

$$0.025 \times 240 + 0.05 \times 195 = 15.75$$

16 customers change their preference to shop C

1 mark

$$\mathbf{d.} \quad T^2 \times S_1 = \begin{bmatrix} 337.95 \\ 238.875 \\ 83.175 \end{bmatrix}$$

This matrix shows the number of customers buying their bakery products from each of the three shops after 2 weeks.

2 marks

Question 3

a. The revenue collected in week 2.

1 mark

b.

$$\begin{bmatrix} 270 & 182 \\ 235 & 205 \end{bmatrix}^{-1} = \begin{bmatrix} \frac{41}{2516} & \frac{-91}{6290} \\ \frac{-47}{2516} & \frac{27}{1258} \end{bmatrix}$$

2 marks

Total 15 marks

©TSSM 2015 Page 6 of 12

Module 2: Networks and decision mathematics

Question 1

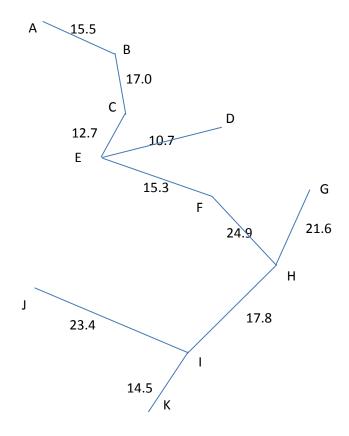
a. a = 35, b = 0

2 marks

b. The last column does not have a zero entry.

1 mark

c.
$$1 \rightarrow B$$
, $2 \rightarrow D$, $3 \rightarrow C$, $4 \rightarrow A$ $d = 75 + 65 + 90 + 45 = 275 km $1 \rightarrow D$, $2 \rightarrow C$, $3 \rightarrow B$, $4 \rightarrow A$ $d = 80 + 55 + 95 + 45 = 275 km$$


1 mark

d.
$$80 + 55 + 95 + 45 = 275 \text{ km}$$

1 mark

Question 2

a.

2 marks

b. 173.4 km

1 mark

©TSSM 2015 Page 7 of 12

Question 3

a.

Activity	Time (in hours)	Depends on
Α	3	-
В	5	-
С	2	Α
D	3	Α
E	3	B, D
F	5	C, E
G	1	С
Н	2	F, G

2 marks

b. A - D - E - F - H

2 marks

Question 4

a. Euler trail has to start at B or C as they are the only vertices with odd degree.

2 marks

b. B-E-D-F-G-C-D-B-A-C or the reverse path from C to B.

1 mark

Total 15 marks

©TSSM 2015 Page 8 of 12

Module 3: Geometry and measurement

Question 1

a.
$$\frac{1}{2}(1+1.2) \times 0.8 = 0.88 \text{ m}^2$$

1 mark

b. Side length =
$$\sqrt{0.8^2 + 0.1^2} = 0.806$$

Perimeter =
$$1 + 0.806 + 0.806 + 1.2 = 3.81 \,\text{m}$$

2 marks

Question 2

a. Distance =
$$\sqrt{1.2^2 + 0.806^2 - 2 \times 1.2 \times 0.806 \times \cos(83^\circ)} = 1.362 \text{ m}$$

2 marks

b.
$$0.88 \times 0.015 \times n = 3.3$$
 $n = 250$ table tops

1 mark

Question 3

a.
$$360^{\circ} - (180^{\circ} - 124^{\circ}) = 304^{\circ}$$

1 mark

b.
$$cos(56^\circ) = \frac{x}{25}$$

 $x = 13.98 \text{ km} = 13980 \text{ m}$

1 mark

c.
$$BP = \sqrt{32^2 + 25^2 - 2 \times 32 \times 25 \times \cos(94^\circ)} = 42.0 \text{ km}$$

1 mark

d.
$$\frac{\sin{(PBA)}}{25} = \frac{\sin{(94^{\circ})}}{42}$$
Angle $PBA = 36.43^{\circ}$
Bearing of P from $P = 180^{\circ} + 38^{\circ} + 36.43^{\circ} = 254^{\circ}T$

3 marks

Question 4

a. $\sqrt[3]{9} : \sqrt[3]{4}$

1 mark

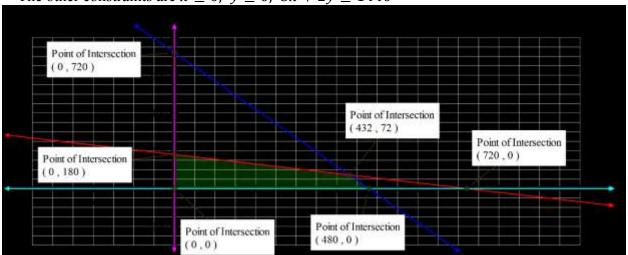
b. SA of smaller bowl =
$$\frac{\sqrt[3]{4}}{\sqrt[3]{9}} \times 24$$

 $4\pi r^2 = \frac{\sqrt[3]{4}}{\sqrt[3]{9}} \times 24$
 $r = 1.2 \text{ cm}$

2 marks Total 15 marks

©TSSM 2015 Page 10 of 12

Module 4: Graphs and relations


Question 1

a.
$$2x + 8y \le 1440$$
 or $x + 4y \le 720$

1 mark

b.

The other constraints are $x \ge 0$, $y \ge 0$, $3x + 2y \le 1440$

3 marks

c. Profit (0, 180) = 3060Profit (480, 0) = 4800

Profit (432, 72) = 5544

Max Profit = \$5544

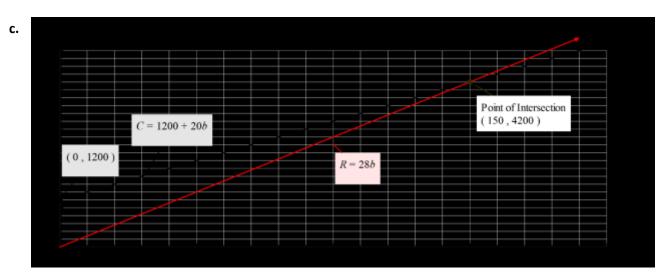
1 mark

d. Wood screws = 432 boxes

Metal screws = 72 boxes

1 mark

Question 2

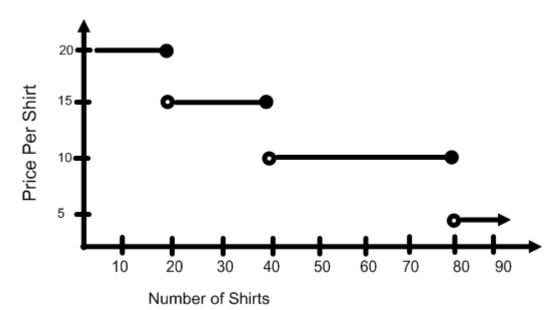

a. It will cost the manufacturer \$20 to produce the metal screw boxes.

1 mark

b. 28b - (1200 + 20b) = 8b - 1200

1 mark

©TSSM 2015 Page 11 of 12



Break-even point is (150, 4200)

3 marks

Question 3

a.

2 marks

b. \$750

1 mark

c. a = 20 and b = 80

1 mark Total 15 marks

©TSSM 2015 Page 12 of 12