

2016 VCAA Further Mathematics Sample (v3 July) Exam 2 Solutions © 2016 itute.com

SECTION A - Core

Data analysis

Q1a 19%

Q1b 23% of $128\,000\,000 = 29\,440\,000$

Q1c Little difference in the percentages of people in the 15-64 group among the 3 countries. Australia: 33%; India: 36%; Japan: 36%

Q2a The mode: 78 The range: 9

Q2b Lower fence = $Q_1 - 1.5 \times IQR = 70.5$ 70 < 70.5, .: 70 is an outlier

Q3a Response variable: Population

Q3c For each km^2 greater in area of an inner suburb the population of the inner suburb is higher by 2680.

Q3di predicted population = $5330 + 2680 \times 4 = 16050$ residual = observed value – predicted value = 6690 - 16050 = -9360

Q3dii $r^2 = 0.668^2 \approx 0.446 = 44.6\%$

Q4a $population = 7700 + 7700 \log(area)$

Q4b $population = 7700 + 7700 \log(90) \approx 23000$

Q5a *population density* = $\frac{population}{area}$, inverse relationship between population density and area, .: $r = -\sqrt{0.141} \approx -0.375$

Q5bi
$$z = \frac{3082 - 4370}{1560} \approx -0.8$$

Q5bii z = -0.8 indicates that the suburb's population density is 0.8 of the standard deviation lower than the mean population density.

Q5biii 2.5% of $38 \approx 1$

http://www.learning-with-meaning.com/

Q6b General trend: Positive, approximately linear

Q6ci $GDP = 20000 + 524 \times time$

Q6cii GDP depends on the world economy and government policies. Predictions based on past figures are unreliable.

Recursion and financial modelling

Q7a $V_1 = 8400 - 1200 = 7200$, $V_2 = 7200 - 1200 = 6000$ dollars Q7b Number of years $= \frac{8400 - 3600}{1200} = 4$

Q7c \$0.25 per kilometre

Q7d 8400 - 0.25n = 6000, n = 9600

Q8a $0.004 \times 12 = 0.048 = 4.8\%$ per annum

Q8b $S_{12} = 1.004^{12} \times 5000 \approx 5245.35$ dollars

Q8ci $T_0 = 3\,000$, $T_{n+1} = 200 + 1.0035 T_n$

Q8cii $T_1 = 200 + 1.0035 \times 3\ 000 = 3\ 210.50$ $T_2 = 200 + 1.0035 \times 3\ 210.50 = 3\ 421.73675$ $T_3 = 200 + 1.0035 \times 3\ 421.73675 = 3\ 633.712829$ $T_4 = 3\ 846.430824$, $T_5 = 4\ 059.893331$, $T_6 \approx 4\ 274.10$ Total interest = $4\ 274.10 - 3\ 000 - 6 \times 200 = 74.10$ dollars

Q9a Amount owing after n months

 $= 7500 \left(1 + \frac{5.76}{12 \times 100}\right)^n = 7500 \times 1.0048^n$ Total repaid after *n* months = 430*n* Let 7500×1.0048ⁿ = 430*n*, *n* ≈ 19.114, .: 19 repayments

Q9bi 7500×1.0048¹² = $430 \times 5 + Q \times 7$, Q = 827.65 dollars

Q9bii 7500×1.0048¹² = $430 \times 5 + 827.65 \times 6 + R$ R = 827.70 dollars

SECTION B

Module 1: Matrices

Q1a The sum of the elements in row 3 of matrix W is 2. It represents the direct connections of 2 ponds by pipes to pond R.

Q1b The number 2 indicates that pond R is connected to pond Qthrough another pond by pipes in 2 different ways.

O2ai $0.6 \times 10\,000 = 6\,000$

Q2aii

Q2bi

	0	0	0	0]	[10000]		0	
$S_1 =$	0.4	0	0	0	1000		4000	
	0	0.25	0.5	0	800	=	650	
	0.6	0.75	0.5	1	0		7150	

Q2bii

	0	0	0	0]	4	10000		0	E	
$S_4 =$	0.4	0	0	0		1000	_	0	B	
	0	0.25	0.5	0		800	=	331	A	
	0.6	0.75	0.5	1		0		11469	D	
.: 331 adult trouts										

Q2ci 13 years

Q2cii The largest number is predicted to be 1325 after 2 years.

Q2d From S_0 to S_1 , E = -10000, B = +3000 and A = -150. To maintain a constant population, add 10 000 eggs, remove 3000 baby trouts and add 150 adult trouts.

B

Q2e $S_2 = (T + 500M)^2 S_0$ 0 [10000] 0 250 0 162500 E 0 1000 0.4 0 0 80000 = 0.25 0.5 0 0 800 1325 |A|0.75 0.5 1 0 130475 D 0.6

R.

http://www.learning-with-meaning.com/

Module 2: Networks and decision mathematics

Q1ai 70 + 90 = 160 m

Q1aii 2 vertices, the house and the top right location

Q1aiii An Eulerian path exists, starting from the house (odd degree) and finishing at the other odd-degree vertex with a distance of 1180 m. There is a another 70 m distance from this odd-degree vertex back to the house. Total distance = 1180 + 70 = 1250 m

Q1aiv 8 edges

Q1bi

Q1bii Minimum spanning tree

Q2a

Q2b EST of H = 4 + 3 = 7 hours after starting

Q2ci AFIM

Q2cii LST for D = 20 - (2 + 4) = 14 hours after starting

Q2d The crashed activity is one of the four activities on the critical path.

Q2e There is a new critical path (CEHGIM) when F is crashed by 2 hours, .: minimum completion time for the project is 36 hours.

2

Module 3: Geometry and measurement

Q1a
$$\ell = \frac{34.92}{360} \times 2\pi \times 65 \approx 39.62 \text{ m}$$

Q1b
$$A = \frac{34.92}{360} \times \pi \times 65^2 \approx 1288 \,\mathrm{m}^2$$

Q2a
$$d = \frac{90 - 34}{360} \times 2\pi \times 6400 \approx 6255 \,\mathrm{km}$$

Q2bi $r = 6400 \sin(90 - 34)^\circ \approx 5305.84 \text{ km}$

Q2bii
$$d = \frac{151 - 142}{360} \times 2\pi \times 5305.84 \approx 833 \text{ km}$$

Q2c $\frac{151-12}{360} \times 24 = 9.2666...$ hours = 9 hours 16 minutes

Q2d Leaving Sydney airport on Sunday, 6 March at 10.20 (i.e. Sunday, 6 March at 00.20), arriving Rome on Monday, 7 March at 02.30. Flight time is 26 hours 10 minutes.

Q3 Let k be the value such that $V_{sen} = kV_{int}$.

::
$$k = \frac{V_{sen}}{V_{int}} = \left(\sqrt{\frac{720}{500}}\right)^3 = 1.728$$

Q4

Module 4: Graphs and relations

Q1a $0.02 \times 2 = 0.04$ kg

- Q1b $0.05 \times 100 + 0.05 \times 400 = 25 \text{ kg}$
- Q1c $0.06x + 0.04y \ge 180 \text{ kg}$

Q1di $y = 2\,000 - \frac{1}{3}x$, it can be expressed as 0.02x + 0.06y = 120

http://www.learning-with-meaning.com/

Qleii

Q1eiii The points are shown as a thick solid line in the following diagram. Vertices (1000, 3000) and (3000, 1000) are included.

Q3a Revenue = 10.8 + 4(8 - 2) = 34.8 dollars

Q3b Assuming the revenue is a continuous function of *n*, 10.8 + 4(n-2) = a + 2(n-10) when n = 10.: a = 10.8 + 4(10-2) = 42.8

Q3c When $n \le 10$, R - C > 0. R - C decreases to zero as *n* increases above 10.

Let R-C = 0, i.e. 42.8 + 2(n-10) - 3.5n = 0, n = 15.2. .: the maximum number of kg is 15.2 to break even.

Please inform mathline@itute.com re conceptual, mathematical and/or typing errors