

FURTHER MATHEMATICS – UNITS 3&4 2018 Written examination 1 Solutions

1

SECTION A – Core Data analysis

Question	Answer	Solution
1	D	83.1 84 84.5 85.6 87 89 90.8 90.9 90.9 93.2 94 94.6 96.4 99.5 103.4 104 104.3 105.7
		The median is between 90.9 and $93.2 \Rightarrow \frac{90.9+93.2}{2} = 92.05$
		Minimum = 83.1 $Q_1 = 87$ Median = 92.05 $Q_3 = 99.5$ Maximum = 105.7
2	Α	$IQR = Q_3 - Q_1$ = 99.5 - 87 = 12.5
		Lower bound = $Q_1 - 1.5 \times IQR$ = $87 - 1.5 \times 12.5$ = $68.25 \Rightarrow$ no outliers on this side
		Upper bound = $Q_3 + 1.5 \times IQR$ = 99.5 + 1.5 × 12.5 = 118.25 \Rightarrow no outliers on this side
3	E	$mode < median < mean \Rightarrow Positively skewed.$
		h d d d d d d d d d d d d d d d d d d d
4	A	Both variables are categorical ordinal variables. <i>Age: under 30</i> and <i>over 30</i> are in order. <i>Driving over the speed limit</i> : never, rarely, sometimes are in order.
5	E	Option A true $\frac{13}{240} \times 100 \approx 5.4\%$ of the people surveyed sometimes <i>drive over the speed limit</i>
		Option B true 240 people participated in this survey.

		Option C true $\frac{154}{240} \times 100 \approx 64\%$ of all the people surveyed never <i>drive over the speed limit</i> .
		Option D true 100 people under 30 participated in this survey.
		Option E not true
		People over 30 who rarely drive over the speed limit: $\frac{39}{140} \times 100 \approx 28\%$
6	В	A random scatterplot of the residuals indicates a linear model and not a non-linear model. The response variable is the variable on the vertical axis and not the one on the horizontal axis.
7	D	Less than 3 books for girls = 25% (first quartile) Less than 3 books for boys = 50% (median) 25% of 120 = 30 girls 50% of x boys = 30 boys Total number of boys = $\frac{30}{0.5}$ = 60 boys were surveyed
8	С	68% 68% $99.7\% - 68\% = 31.7\%$ $\frac{31.7}{2} = 15.85\%$
9	В	$z = \frac{x - \mu}{\sigma}$ -1.6 = $\frac{x - 1}{0.05} \Rightarrow x - 1 = 0.05 \times (-1.6)$ x = 1 - 0.08 x = 0.92 cm
10	Α	$L = 0.94 \times R + 1.06$
11	С	$b = r \frac{s_y}{s_x} = 0.72 \times \frac{12.8}{7.9} = 1.17$
12	Ε	x^2 will not linearise this data.

13	Α	actual revenue
		seasonal index = $\frac{\text{actual revenue}}{\text{deseasonalised revenue}}$
		Monday has a seasonal index of $0.68 \Rightarrow 0.68 = \frac{\text{actual revenue}}{\text{deseasonalised revenue}}$
		deseasonalised revenue _{Monday} = $\frac{\text{actual revenue}}{0.68}$
		$\approx 1.47 \times \text{actual revenue}$ The actual revenue must be increased by 47%.
		Thursday has a seasonal index of $1.35 \Rightarrow 1.35 = \frac{\text{actual revenue}}{\text{deseasonalised revenue}}$
		deseasonalised revenue _{Thursday} = $\frac{\text{actual revenue}}{1.35}$
		$\approx 0.74 \times \text{actual revenue}$ The actual revenue must be decreased by 26%.
14	D	deseasonalised revenue _{Thursday} = $\frac{\text{actual revenue}}{1.35}$
		$=\frac{1250}{1.35}$
		= 925.926
		≈ \$926
15	Α	An irregular pattern.
16	С	$\begin{array}{c} 110 \\ 100 \\ 90 \\ 80 \\ 70 \\ 60 \\ 50 \\ 40 \\ 30 \\ 20 \\ 10 \\ 0 \\ 1 \\ 2 \\ 3 \\ 3 \\ 3 \\ m \end{array}$

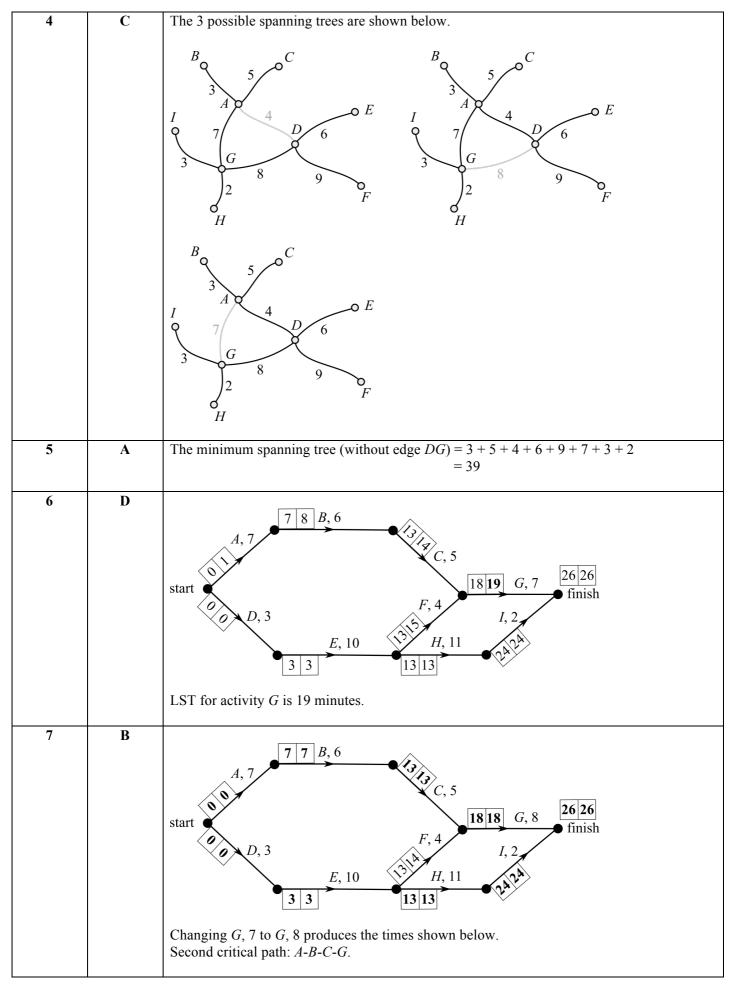
Recursion and financial modelling

Question	Answer	Solution
17	A	This is a simple interest account because a flat rate of \$28 is added at the end of each year. r% of \$800 = \$28 $r = \frac{28}{800} \times 100$ = 3.5%
		- 3.370
18	В	The value of the asset at the end of year $n + 1$ is \$4000 less than the value of the asset at the end of year n .
		$V_{n+1} = V_n - 4000$, where $V_0 = 50000
19	A	Geometric decay = $100\% - 30\%$ = 70% = 0.7
		The height of the hedge at the end of the 1 st year = $0.7 \times (0.5 + 0.4)$ = 0.7×0.9
		The height of the hedge at the end of the 2^{nd} year = $0.7 \times (0.7 \times 0.9 + 0.4)$ = $0.7^2 \times 0.9 + 0.7 \times 0.4$
		The height of the hedge at the end of the 3^{rd} year = $0.7 \times (0.7^2 \times 0.9 + 0.7 \times 0.4 + 0.4)$ = $0.7^3 \times 0.9 + 0.7^2 \times 0.4 + 0.7 \times 0.4$
20	D	Loan A: Using available CAS technology, N: 52 I(%): 5 PV: -15000 Pmt: 0 FV: 15768.688 \Rightarrow interest = 15768.688 - 15000 = 768.688 \approx \$769 PpY: 52 CpY: 52
		Loan B: Using available CAS technology, N: 1 I(%): 8 PV: -15000 Pmt: 0 FV: 16200 \Rightarrow interest = 16200 - 15000 = \$1200 PpY: 1 CpY: 1
21	С	Using Finance solver on available CAS technology, the future value of the loan at the end of the 2 nd month is N: 2 I(%): 3.6 PV: 460000 Pmt: -2500 FV: -457756.64 PpY: 12 CpY: 12

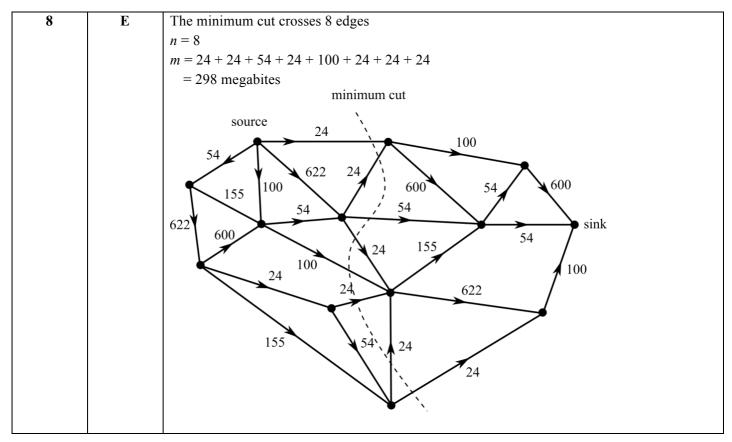
		Using Finance solver on available CAS technology, the future value of the loan at the end of the 3^{rd} month is N: 3 I(%): 3.6 PV: 460000 Pmt: -2500 FV: -456629.9 PpY: 12 CpY: 12 Loan reduction = 457756.64 - 456629.9 \approx \$1127
22	D	N: 4 I(%): 5.33333 PV: -150000 Pmt: 2000 FV: 150000 PpY: 4 CpY: 4
23	Е	Amount per month = $\frac{21600}{12}$ = \$1800 N: 36 I(%): 6.4 PV: -219999.9986 ≈ 220000 Pmt: 1800 FV: 195201.33 PpY: 12 CpY: 12
24	D	Option A true N: 36.02389 \approx 3 years I(%): 3.8 PV: 120000 Pmt: -3530 FV: 0 PpY: 12 CpY: 12 Option B true N: 36 I(%): 3.8 PV: 120000 Pmt: -2500 FV: -39294.76 PpY: 12 CpY: 12 Option C true N: 47.98 \approx 4 years I(%): 3.8 PV: 120000 Pmt: -2700 FV: 0 PpY: 12 CpY: 12

Option D false A higher monthly payment will decrease the life of the loan and not increase .
Option E true N: 1 I(%): 3.8 PV: 120000 Pmt: -3530 FV: -116850 \Rightarrow 120000 - 116850 = \$3150 PpY: 12 CpY: 12

SECTION B – Applications Module 1 – Matrices

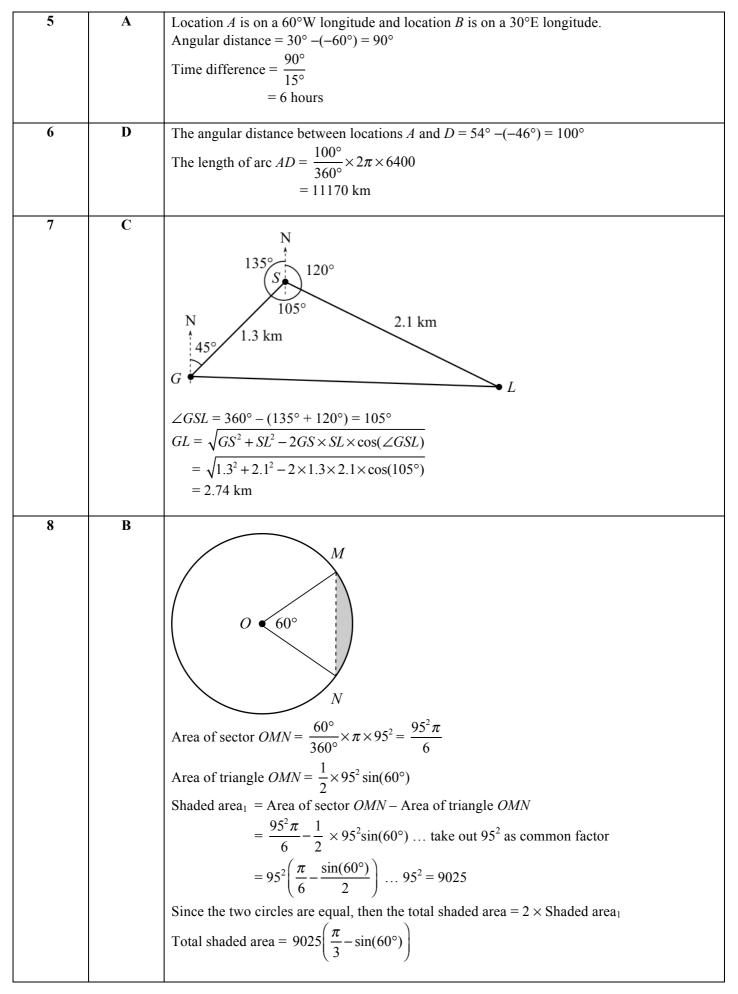

Question	Answer	Solution
1	С	$mA + nB = 1$ $m\begin{bmatrix} -1 & 4 \\ 2 & -1 \end{bmatrix} + n\begin{bmatrix} -2 & 6 \\ 3 & -2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ $\begin{bmatrix} -m & 4m \\ 2m & -m \end{bmatrix} + \begin{bmatrix} -2n & 6n \\ 3n & -2n \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ equate corresponding elements $-m - 2n = 1 \dots [1]$ $4m + 6n = 0 \dots [2]$ Using available CAS technology solve the system of simultaneous equations [1] and [2]. $m = 3 \text{ and } n = -2.$ Alternative 'by hand' method Multiply [1] by 4. $-4m - 8n = 4 \dots [3]$ $4m + 6n = 0 \dots [2]$ Add [2] and [3]. $-2n = 4 \dots \text{ divide the equation by } 2$ $n = -2$ Substitute $n = -2$ into [1] $-m - 2 \times (-2) = 1 \dots \text{ simplify}$ $-m + 4 = 1 \text{ subtract 4 from both sides of the equation}$ $-m = 3$
2	E	$a_{23} = 2 - 2 \times 3$ = -4 $b_{23} = 2 \times 2 + 3$ = 7 $2a_{23} - 3b_{23} = 2 \times (-4) + 3 \times 7$ = 13
3	Ε	$(C+D)(C-D) = C \times C - C \times D + D \times C - D \times D$ $= C^{2} - CD + DC - D^{2}$

© LegaC

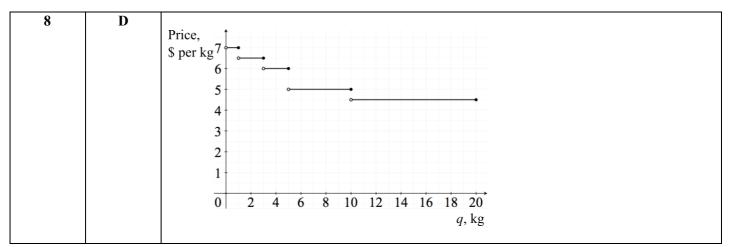

4	Α	$\begin{bmatrix} 28 & 35 \\ 37 & 42 \end{bmatrix} \cdot \begin{bmatrix} 120 \\ 75 \end{bmatrix} = \begin{bmatrix} 28 \times 120 + 35 \times 75 \\ 37 \times 120 + 42 \times 75 \end{bmatrix}$ July August
5	С	Using available CAS technology solve each system of linear equations or calculate the determinant of each square matrix.
		$\begin{bmatrix} 3 & 0 \\ 1 & -2 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} -1 \\ 2 \end{bmatrix}$ has a unique solution \Rightarrow consistent independent
		$\begin{bmatrix} 6 & 2 \\ -3 & -1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} -10 \\ 5 \end{bmatrix}$ has infinitely many solutions \Rightarrow consistent dependent
		$\begin{bmatrix} -1 & 5 \\ 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 3 \\ -4 \end{bmatrix}$ has a unique solution \Rightarrow consistent independent
		$\begin{bmatrix} 7 & 2 \\ -14 & -4 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 3 \\ -1 \end{bmatrix}$ has no solution \Rightarrow inconsistent
6	С	
		Matrix P cannot be used to change $\begin{bmatrix} S \\ T \\ E \\ E \\ M \end{bmatrix}$ $\begin{bmatrix} M \\ E \\ B \\ T \\ M \end{bmatrix}$ Matrix P cannot be used to change $\begin{bmatrix} N \\ T \\ A \\ M \end{bmatrix}$ $\begin{bmatrix} M \\ E \\ T \\ T \\ M \end{bmatrix}$
7	D	Substitute the matrices given into $M_{n+1} = TM_n + A$.
		$M_{1} = \begin{bmatrix} 0.24 & 0.15 & 0 \\ 0 & 0.36 & 0.72 \\ 0.76 & 0.49 & 0.28 \end{bmatrix} \cdot \begin{bmatrix} 1200 \\ 850 \\ 950 \end{bmatrix} + \begin{bmatrix} 300 \\ 400 \\ 500 \end{bmatrix} = \begin{bmatrix} 715.5 \\ 1390 \\ 294.5 \end{bmatrix}$
		$M_{2} = \begin{bmatrix} 0.24 & 0.15 & 0 \\ 0 & 0.36 & 0.72 \\ 0.76 & 0.49 & 0.28 \end{bmatrix} \cdot \begin{bmatrix} 715.5 \\ 1390 \\ 294.5 \end{bmatrix} + \begin{bmatrix} 300 \\ 400 \\ 500 \end{bmatrix} = \begin{bmatrix} 680.22 \\ 2408.44 \\ 2311.34 \end{bmatrix}$
		$M_{3} = \begin{bmatrix} 0.24 & 0.15 & 0 \\ 0 & 0.36 & 0.72 \\ 0.76 & 0.49 & 0.28 \end{bmatrix} \cdot \begin{bmatrix} 680.22 \\ 2408.44 \\ 2311.34 \end{bmatrix} + \begin{bmatrix} 300 \\ 400 \\ 500 \end{bmatrix} = \begin{bmatrix} 824.52 \\ 2931.2 \\ 2844.28 \end{bmatrix}$
8	В	loss
		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

Question	Answer	Solution
1	Ε	The graph is connected, has three vertices of even degrees and two vertices of odd degrees, has four faces and seven edges, is planar but does not have any isolated vertices.
2	A	Option A There is at least one hamiltonian cycle shown below. $A \underbrace{B}_{E} \underbrace{C}_{E} D$
		There is no eulerian circuit because the graph has vertices of odd degree. B $Degree 3$ $Degree 3$ $Degree 3$
		<i>E</i> Option B No possible hamiltonian cycles; however, there is at least one eulerian circuit. One possible eulerian circuit: <i>A-B</i> (top edge)- <i>C</i> (top edge)- <i>D</i> (bottom edge)- <i>C</i> (bottom edge)- <i>B-E-A</i> Option C No possible hamiltonian cycles. No eulerian circuits because of the vertex of degree 1 (vertex <i>D</i>).
		Option D The graph has at least one hamiltonian cycle (<i>A-B-C-D-E-A</i>) and at least one eulerian circuit (<i>B-A-E</i> (bottom edge)- <i>D</i> (top edge)- <i>B-C-D-B</i>).
		Option E Since <i>D</i> is an isolated vertex no cycles or circuits are possible.
3	С	Nigel is going to wash the dog. Laura O D Mason O M Nigel O T
		Olivia V Pamela W

Module 2 – Networks and decision mathematics



Module 3 – Geometry and measurement


Question	Answer	Solution
1	Α	Length of smaller cube = $5.7 \div 3$ = 1.9 cm
2	D	Since the device takes the space of one small cube, the volume of this space is $\frac{1}{27}V$.
3	Ε	Using Pythagoras theorem, $s^2 = DH^2 + \left(\frac{AB}{2}\right)^2$ $s = \sqrt{29.6^2 + 7.4^2}$ = 30.51 cm
4	Ε	ABCD is a regular triangular pyramid which means that the triangular base is an equilateral triangle and the three triangular faces are identical isosceles triangles. Area of the triangular base $=\frac{1}{2} \times 14.8 \times 14.8 \times \sin(60^{\circ})$ $= 94.85 \text{ cm}^2$ $3 \times \text{Area}_{\Delta ABD} = 3 \times \frac{1}{2} \times 14.8 \times 29.6$ $= 657.12 \text{ cm}^2$ Total surface area $= 94.85 + 657.12$ $= 751.97 \text{ cm}^2$

Module 4 – Graphs and relations

Question	Answer	Solution
1	Α	Using available CAS technology make <i>y</i> the subject in each equation.
		$y = -\frac{2}{3}x + \frac{7}{3}, y = 6.5x + 3.25, y = -2x + \frac{1}{4}, y = 9x + 2, y = \frac{1}{12}x - \frac{1}{8}$
2	С	(2, 1) and (3, <i>a</i>) lie on the graph of $y = kx^{-2}$. Substitute (2, 1) into $y = kx^{-2}$.
		$1 = \frac{k}{2^2} \Rightarrow k = 4$ Substitute (3, a) into $y = 4x^{-2}$.
		$a = \frac{4}{9}$
3	Е	Brianna has 60 coins in her moneybox with a total value of \$19.50. $f + t = 60 \dots [1]$
		$0.50f + 0.20t = 19.50 \dots [2]$ Using available CAS technology solve the simultaneous linear equations [1] and [2].
		Alternative 'by hand' method
		Substitute $f = 60 - t$ into [2].
		$0.50 \times (60 - t) + 0.20t = 19.50 \dots$ expand brackets
		$30 - 0.50t + 0.20t = 19.50 \dots$ collect like terms
		$0.30t = 10.50 \dots$ divide the equation by 0.30
		$t = \frac{10.50}{0.30}$
		t = 35 coins
		Substitute $t = 35$ into [1].
		f = 60 - 35
		= 25 coins
4	Α	Option A false The cost function $C(x) = 1000 + 4.50x$ and not $C(x) = 1000 - 4.50x$.
		Option B true The profit function, $P(x) = R(x) - C(x)$ $= 0.02x^2 + 10x - (1000 + 4.50x)$ $= 0.02x^2 + 5.50x - 1000.$
		Option C true For the break-even point, use available CAS technology to solve the equation $C(x) = R(x)$ $\Rightarrow x = 125$ schoolbags
		Option D true Since the break-even point is 125 schoolbags, then for $x < 125$ the company incurs a loss.
		Option E true Substitute $x = 200$ into $P(x)$. $P(200) = 0.02 \times 200^2 + 5.50 \times 200 - 1000$ = \$900

5	E	$p \neq 14$
		$\begin{array}{c} y \\ 20 \\ 20 \\ (2, 14) \\ (2, 12) \\ (2, 12) \\ (2, 10) \\ (2, 8) \\ (2, 8) \\ (2, 4) \\ (0) \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ x \end{array}$
6	В	F = ax + 3y Substitute each corner point into $F(x)$.
		Substitute each corner point into $F(x)$. At the point $(0, 0), F = a \times 0 + 3 \times 0 = 0 \dots [1]$ At the point $(0, 2), F = a \times 0 + 3 \times 2 = 6 \dots [2]$ At the point $(5, 0) \Rightarrow F = a \times 5 + 3 \times 0 = 5a \dots [3]$ At the point $(5, 10) \Rightarrow F = a \times 5 + 3 \times 10 = 5a + 30 \dots [4]$ At the point $(3, 20) \Rightarrow F = a \times 3 + 3 \times 20 = 3a + 60 \dots$ maximum
		For $3a + 60$ to be a maximum, it must be greater than all the other values. From [1]: $3a + 60 > 0 \Rightarrow a > -20$ true since $a > 0$ From [2]: $3a + 60 > 6 \Rightarrow a > -18$ true since $a > 0$ From [3]: $3a + 60 > 5a \Rightarrow a < 30$ From [4]: $3a + 60 > 5a + 30 \Rightarrow a < 15$ Since $3a + 60$ must be greater than both $5a$ and $5a + 30$, then $a < 15$. $a \in (0, 15)$
7	В	The horse walks 120 m in 2 minutes means that the gradient of the line is $120 \div 2 = 60$ \Rightarrow the first branch has equation $d(t) = 60t$.
		The horse stops for 3 minutes which means that the horse is 120 m from the starting point between $t = 2$ min and $t = 5$ min \Rightarrow the second branch has equation $d(t) = 120$.
		The horse turns around (negative gradient) and trots 200 m in 1.6 minutes which means that the gradient of the line is $\frac{-200}{1.6} = -125$
		\Rightarrow the third branch has equation $d(t) = -125t + c$
		To calculate <i>c</i> substitute point (5, 120) into $d(t) = -125t + c$. $120 = -125 \times 5 + c$ c = 745
		The third equation is $d(t) = -125t + 745$ between $t = 5$ min and $t = 6.6$ min. $\begin{cases} 60t & 0 \le t \le 2 \end{cases}$
		$d(t) = \begin{cases} 120 & 2 < t \le 5 \\ -125t + 745 & 5 < t \le 6.6 \end{cases}$
		$\left -125t + 745 \right 5 < t \le 6.6$

