2021 VCE Further Mathematics Trial Examination 1 Suggested Solutions

Quality educational content

Kilbaha Education	Tel: (03) 9018 5376
PO Box 2227	
Kew Vic 3101	kilbaha@gmail.com
Australia	https://kilbaha.com.au

All publications from Kilbaha Education are digital and are supplied to the purchasing school in both WORD and PDF formats with a school site licence to reproduce for students in both print and electronic formats.

Quality educational content

Kilbaha Education	(Est. 1978) (ABN 47 065 111 373)	Tel: +613 9018 5376
PO Box 2227		Fax: +613 9817 4334
Kew Vic 3101		Email: <u>kilbaha@gmail.com</u>
Australia		Web: https://kilbaha.com.au

IMPORTANT COPYRIGHT NOTICE FOR KILBAHA PUBLICATIONS

(1) The material is copyright. Subject to statutory exception and to the provisions of the relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Kilbaha Pty Ltd.

(2) The contents of these works are copyrighted. Unauthorised copying of any part of these works is illegal and detrimental to the interests of the author(s).

(3) For authorised copying within Australia please check that your institution has a licence from <u>https://www.copyright.com.au</u> This permits the copying of small parts of the material, in limited quantities, within the conditions set out in the licence.

(4) All pages of Kilbaha files must be counted in Copyright Agency Limited (CAL) surveys.

(5) Kilbaha files must **not** be uploaded to the Internet.

(6) Kilbaha files may be placed on a password protected school Intranet.

Kilbaha educational content has no official status and is not endorsed by any State or Federal Government Education Authority.

While every care has been taken, no guarantee is given that the content is free from error. Please contact us if you believe you have found an error.

CAUTION NEEDED!

All Web Links when created linked to appropriate Web Sites. Teachers and parents must always check links before using them with students to ensure that students are protected from unsuitable Web Content. Kilbaha Education is not responsible for links that have been changed in its publications or links that have been redirected.

Section A Core – Data Analysis

Question 1 D	Question 2 B	
More than 17 goals is 18 or above. There are four dots for 18 or above. So 4.	The median is between the 24 th and 25 th value. This occurs between two values of 13 .	
Question 3 D	Question 4 A	
$IQR = Q_3 - Q_1 = 15 - 12 = 3$	Adding frequencies shows there are 25 drill bits Median value will be the 13^{th} . This is in the first column between 10^{-1} and 10^{0} ie. between one tenth of a mm and 1 mm. These values are between 0 and 1.	
Question 5 C	Question 6 D	
22.2 is 2 standard deviations below the mean. 2.5% of the sample are expected to be less than this. $2.5\% \times 1600 = 40$	$-1.4 = \frac{x - 25.6}{1.7}$ $x = 23.22$ ≈ 23.2	
Question 7 A	Question 8 D	
<i>Age group</i> is a categorical variable that can be put in order, so ordinal. <i>Opinion</i> is a categorical variable that can be put in order, so also ordinal.	From the graph, we see about 33% of this age group somewhat approve. $33\% \times 160 = 52.8$	

Section A Core – Data Analysis

Question 9 C	Question 10 B	
We need to compare at least two age groups to see if there is an association, so B, D and E can be eliminated. Option A does not compare the same thing across age groups. Only option C compares the same opinion across two age groups.	y = a + bx $b = -0.62 \frac{15.0}{1.3} = -7.15384 \dots$ $a = 78.0 - (-7.15384) \dots \times 5.6$ $= 118.061 \dots$ Closest equation is $y = 120 - 7.2x$	
Question 11 E	Question 12 C	
The coefficient of -1.82 gives the expected rate of change of <i>temperature</i> with <i>time</i> . Being negative, we expect as <i>time</i> increases, <i>temperature</i> decreases. (NOTE: Response B is incorrect, as in this case, r must be negative. Watch out for this trap)	Predicted temperature = $95.8 - 1.82 \times 22 = 55.76$ Residual = actual - predicted = $54.6 - 55.76$ = -1.16	
Question 13 A	Question 14 E	
$\frac{1}{time} = -0.013 + 0.041 \times 8 = 0.315$ $time = \frac{1}{0.315} \approx 3.2$	Use technology to apply a \log_{10} transformation to <i>number of pumps</i> , then carry out linear regression with $\log(number of pumps)$ as the explanatory variable. $11 \qquad \hline \hline$	

Section A Core – Data Analysis

Question 15 D	Question 16 C
The values for August, September October	Daily average = $513 \div 7 = 73.285$
November, December are	Thursday's figure is 53% above this value.
8.2, 6.4, 5.8, 8.2, 6.2 respectively.	Expected number of golf balls sold on a
Placing these in ascending order, the median is	Thursday
6.4	= 1.53×73.285 ≈ 112

Section A Core – Recursion and financial modelling

Question 17 C	Question 18 B
The constant deduction is 950.	Calculation (i) would give the interest earned minus \$950. Calculation (iv) would give the interest earned during the <i>fifth</i> month.
	Interest earned during the fourth month will be 0.45% of the value at the end of the third month, or 0.0045 \times V ₃ , so calculation (ii) will work.
	Also, $V_4 = V_3 + interest - 950$ <i>or</i> , <i>interest</i> = 950 - $V_3 + V_4$ so calculation (iii) will work.
	Calculation (v) has the signs for V_4 and V_3 the wrong way round.
	Calculations (ii) and (iii) are the only ones that will calculate the interest earned during the fourth month.
Question 19 B	Question 20 D
effective rate = $\left[\left(1 + \frac{4.65}{400}\right)^4 - 1\right] \times 100$ ≈ 4.73	The principal of a perpetuity remains constant, so the withdrawal must equal the interest earned. Option D is the only one in which this occurs.
	$1.076 \times 57000 - 4332 = 57000$
Question 21 A	Question 22 E
Payment number 7: Interest rate = $\frac{1271.87}{\times} \times 100 \approx 1.27\%$ per guarter	Depreciation over 5 years = 17000 - 2000 = 15000
Payment number 8:	Depreciation per unit = $\frac{15000}{25000 \times 5} = 0.12$
$= \frac{1178.58}{95819.50} \times 100 \approx 1.23\% \text{ per quarter}$	Value starts at 17000 and decreases 0.12 for each brochure printed, ie
This is a decrease of 0.04% per quarter which is equivalent to $0.04 \times 4 = 0.16\%$ per annum	$V_n = 17000 - 0.12n$

Section A Core –	Recursion an	d financial	modelling
------------------	---------------------	-------------	-----------

Question 23 C	Question 24 B
Using finance solver	Find how long it will take to pay off the loan
	after the lump sum payment is made.
$N = 20 \times 12 = 240$	
I = 4.25	N =
PV = 250000	I = 4.25
PMT =	PV = 130000
FV = 0	PMT = -1650
P/Y = 12	FV = 0
C/Y = 12	P/Y = 12
This gives $PMT = -1548.086$	C/Y = 12
	This gives $N = 92.5415$
Aimee's repayment is \$1548 each month	
	Adding to the first 10 years, gives
	$92.54 + 120 \approx 213$

End of solutions Section A Core

Module 1 – Matrices

Question 1 D	Question 2 D
A binary matrix has elements of only 0 and 1.	P must be a 5 x 5 permutation matrix consisting of a 1 and four zeros in each row. This eliminates A, C and E. Option B will produce $\begin{bmatrix} N\\ A\\ E\\ L\\ G \end{bmatrix}$ so is incorrect.
Question 3 E	Question 4 B
Let the rule be $a_{ij} = di + ej + f$ Pick 3 elements, not all from the same column, for example: $a_{11} = 3$ $a_{21} = 6$ and $a_{23} = 8$ This gives us 3 simultaneous equations d + e + f = 3 2d + e + f = 6 2d + 3e + f = 8 Solving this gives $d = 3$, $e = 1$, $f = -1$	For an inconsistent system, there are no solutions. The graphs of the lines are parallel. For no solution, determinant = 0 So, $(3 \times -3) - 9a = 0$ a = -1 Now if b =2, the lines will be exactly the same (dependent system). So, b = -4 will give an inconsistent system

Question 5 E

Use technology to find the inverse of the matrix of coefficients.

1.1 1.2	*Unsaved 🗢	1 ×
$\begin{bmatrix} 2 & 0 & 2 \\ 0 & 4 & 2 \\ 4 & 2 & 4 \end{bmatrix}^{-1}$	$\begin{bmatrix} -3\\ 2\\ -1\\ 2 \end{bmatrix}$	$ \begin{array}{c c} \hline 1 \\ \hline 2 \\ \hline 1 \\ \hline 1 \\ \hline 2 \\ \hline 1 \\$
	L	2 J M 1/99

Question 6 A

There is only one given option where the proportion of Apple eaters choosing an Apple the following week is greater than the proportion of Banana eaters choosing a Banana the following week ie A to A (0.7) is greater than B to B (0.5)

Module 1 – Matrices (continued)

Question 7 D	Question 8 A
The proportion of each changing their choice is	Find the steady state matrix by raising T to a large
0.7 of B, 0.6 of C, 0.8 of D	power e.g. 99.
$0.7 \times 35 + 0.6 \times 52 + 0.8 \times 63 = 106.1$	In the long term:
$\frac{106.1}{150} \times 100 \approx 71$	$\boxed{12 13 14 * \text{Unsaved}} \boxed{46.1538} \underbrace{65.3846}_{65.3846} \underbrace{65.3846}_{38.4615} \underbrace{63}_{1} $

End of Module 1 Solutions

Module 2 – Networks and	decision	mathematics
-------------------------	----------	-------------

Question 1 D	Question 2 E
Degrees of odd vertices are 3, 3, 3 and 1 Sum = 10	An Eulerian trail can only be made if there are two and only two odd vertices. The network has four odd vertices; B, E, F and H. Joining B and F makes them both even, leaving only two odd vertices.
Question 3 E	Question 4 C
The graph has 6 vertices, 12 edges and 8 faces (remember that the outside area counts as a face) so, $e = 12$, $v = 6$, $f = 8$	There are two edges between A and C, so elements in row A column C and row C column A should both be 2. This eliminates options A, B, D and E. Also, because the connections work in both directions, the adjacency matrix should be symmetric. Other methods of elimination could be used, such as row and column E should only contain one 1 and the rest zeros.
Question 5 D	
The minimal spanning tree has a weight of $2+3+2+1+3+4+2+2=19$	

Module 2 – Networks and decision mathematics (continued)

End of Module 2 Solutions

Module 3 –	Geometry and	measurement
------------	--------------	-------------

Ouestion 1 B	Ouestion 2 C
By Pythagoras.	
$YB = \sqrt{193^2 - 95^2} = 168$	The latitude of a location will give us how many degrees north or south of the equator it is. In this case, we are looking for the location furthest south. Out of the options, 42°S is closest to the South Pole.
Question 3 D	Question 4 E
$AB = \sqrt{10^2 + 14^2 - 2 \times 10 \times 14 \cos 125^\circ}$ $\approx 21.368 \dots$ Perimeter = 14 + 10 + 21.368 \approx 45	$\begin{array}{c c} 42^{\circ} & \text{R could be found by} \\ \hline & 42^{\circ} & \text{calculating either} \\ 6400 \times \cos 42^{\circ} \\ \hline & 42^{\circ} & \text{or } 6400 \times \sin 48^{\circ} \end{array}$
	The cosine option is the only one given here.
Question 5 D	Question 6 A
Area of larger semicircle – area of smaller semicircle $=\frac{\pi \times 4.5^2}{2} - \frac{\pi \times 3.5^2}{2}$ $=\frac{20.25\pi}{2} - \frac{12.25\pi}{2}$ $=\frac{8\pi}{2} = 4\pi$	$V = \frac{1}{3} \times a \times h$, where <i>a</i> is the area of the base. Solving 84.50 = $\frac{1}{3} \times a \times 15.60$ gives <i>a</i> = 16.25 Now $x^2 = 16.25$ Length AB $\sqrt{x^2 + x^2}$ = $\sqrt{16.25 + 16.25} \approx 5.70$

Module 4 – Graphs and relations

Question 1 C	Question 2 A
At 5:00 pm, volume of water = 28 L. At 7:30 pm, volume of water = 15 L. The difference in volume is 13 L.	The volume of water is 20 litres or more between about 3:40 pm and 7:15 pm. This is 3 hours and 35 minutes = $180 + 35 = 215$ minutes
Question 3 C	Question 4 B
Gradient = $\frac{0 - 20}{-30 - 0} = \frac{20}{-30} = \frac{-2}{3}$ y intercept is at -20, so equation of the line is	Costs = $560 + 45 \times 5 \times 4 = 1460$ His revenue = $5 \times a$ where <i>a</i> is the hourly charge to his client.
$y = \frac{-2}{3}x - 20$ When y = -14, $x = 6 \times \frac{3}{-2} = -9$	Profit = Revenue – Cost 750 = 5a - 1460 5a = 2210 $a = 2210 \div 5 = 442
Question 5 E	Question 6 D
gradient $\frac{350-230}{15-35} = -6$ Substitute (15, 350) into V = c - 6t $350 = c - 6 \times 15$ c = 440 So, $V = 440 - 6t$	First find the rule for graph 2. We know it is of the form $y = \frac{k}{x^2}$ where $k = \frac{108}{8} = \frac{27}{2}$ $y = \frac{27}{2x^2}$ When x = 3, $y = \frac{27}{2 \times 9} = \frac{3}{2}$
OR	
Enter the points into Lists and Spreadsheets and perform linear regression.	
1.1 1.2 *Unsaved \bigtriangledown Image: Constraint of the state of the	

Module 4 – Graphs and relations (continued)

Question 7 A	Question 8 D
Sarah has a maximum of $40 \times 7 = 280 to spend on cups and saucers. Cost of cups = $$2.7 x$ Cost of saucers = $$1.90 y$ The total cost must be less than or equal to $$280$ So, $2.7x + 1.9y \le 280$	To have a maximum value at point P only, the gradient of the line running from (0,18) to (n, 0) must not be as steep as the gradient of the objective function. Ignoring the negative signs, the slope of the objective function is $\frac{24}{20} = 1.2$ The value of $\frac{18}{n}$ must be less than 1.2 $\frac{18}{n} < 1.2$ $n > \frac{18}{1.2}$ n > 15 So the only option greater than 15 is 16.

End of Module 4 Solutions

End of Suggested Solutions 2021 VCE Further Mathematics Trial Examination 1

Kilbaha Education	Tel: (03) 9018 5376
PO Box 2227	
Kew Vic 3101	kilbaha@gmail.com
Australia	https://kilbaha.com.au