2021 VCE Further Mathematics Trial Examination 2 Suggested Solutions

Quality educational content

Kilbaha Education	Tel: (03) 9018 5376
PO Box 2227	
Kew Vic 3101	kilbaha@gmail.com
Australia	https://kilbaha.com.au

All publications from Kilbaha Education are digital and are supplied to the purchasing school in both WORD and PDF formats with a school site licence to reproduce for students in both print and electronic formats.

Quality educational content

Kilbaha Education	(Est. 1978) (ABN 47 065 111 373)	Tel: +613 9018 5376
PO Box 2227		
Kew Vic 3101		Email: <u>kilbaha@gmail.com</u>
Australia		Web: <u>https://kilbaha.com.au</u>

IMPORTANT COPYRIGHT NOTICE FOR KILBAHA PUBLICATIONS

(1) The material is copyright. Subject to statutory exception and to the provisions of the relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Kilbaha Pty Ltd.

(2) The contents of these works are copyrighted. Unauthorised copying of any part of these works is illegal and detrimental to the interests of the author(s).

(3) For authorised copying within Australia please check that your institution has a licence from <u>https://www.copyright.com.au</u> This permits the copying of small parts of the material, in limited quantities, within the conditions set out in the licence.

(4) All pages of Kilbaha files must be counted in Copyright Agency Limited (CAL) surveys.

(5) Kilbaha files must not be uploaded to the Internet.

(6) Kilbaha files may be placed on a password protected school Intranet.

Kilbaha educational content has no official status and is not endorsed by any State or Federal Government Education Authority.

While every care has been taken, no guarantee is given that the content is free from error. Please contact us if you believe you have found an error.

CAUTION NEEDED!

All Web Links when created linked to appropriate Web Sites. Teachers and parents must always check links before using them with students to ensure that students are protected from unsuitable Web Content. Kilbaha Education is not responsible for links that have been changed in its publications or links that have been redirected.

-	data that has	a natural order. can be ordered by (1 ma	-	b. Two Competitors 18 and 24 are professional adults. (1 mark)
с.				d.
	Status			$\frac{6}{18} \times 100 \approx 33.3 \%$
Section	Amateur	Professional		10 (1 mark)
junior	7	0		
adult	6	2		
senior	5	5		
Total	18	7		
		(2 ma	rks)	
е.				f.
The median time of 39 minutes for juniors is greater than the median for seniors (30.5) which is greater than for adults (22.5). (1 mark)		IQR = 41 - 37 = 4 Upper fence = $Q_3 + 1.5 \times IQR$ = $41 + 1.5 \times 4$ = 47		
				(1 mark)

Question 2

a.	b.
2.5%	81
19 is 2 standard deviations below the mean.2.5% of data is expected to lie below this.(1 mark)	40 and 47 are 1 and 2 standard deviations above the mean respectively. 13.5% of data is expected to lie between these values. 13.5% of 600 = 81 (1 mark)
с.	
21.8 years.	
$-1.6 = \frac{x - 33}{7}$ x = 21.8	
(1 mark)	

a.	b. (i)
Enter data into CAS with number of volunteers	
as the explanatory variable.	entry fee
number of campsite bookings	
= 2.42 + 0.568 x number of volunteers	
(1 mark)	(1 mark)
b. (ii)	b. (iii)
Use two points to accurately draw. Let entry fee = 0, then number of entries = 8.4 (1 mark)	On average, for every extra one dollar in <i>entry</i> <i>fee</i> , the <i>number of entries</i> is expected to fall by 2.1 (1 mark)

Question 3 (continued)

b. (iv)	b. (v)
$(-0.927)^2 \times 100\% \approx 85.9\%$	\$9.50
(1 mark)	The median value is between the 5^{th} (\$9) and 6^{th} (\$10) values. (1 mark)
b. (vi)	
number of entries = $50.4 - 2.1 \times 14$ = 21	
(1 mark)	
c. Predicted = $50.4 - 2.1 \times 9 = 31.50$	d. (i)
Residual = Actual – predicted = $29 - 31.50 = -2.5$	That the form is linear.
residual 10^{4} 5^{4} 6	(1 mark)
(1 mark)	
d. (ii) The residuals are distributed randomly around the horizontal axis.	
(1 mark)	

a.	Summer average = 411		
Average for $2018 = 480$	Autumn average = 520		
Average for $2019 = 440$	Winter average $= 319$		
	Spring average = 590		
Average over the two years			
	Dividing each season's average by 460 gives		
=(480+440)/2=460			
	Summer Autumn Winter Spring		
	0.89 1.13 0.69 1.28		
OR			
2018 quarterly average	2019 quarterly average		
$=\frac{436+540+340+604}{4}=480$	$=\frac{386+500+298+576}{4}=440$		
4	4		
2018 Seasonal indices =	2019 Seasonal indices =		
	2017 Seusonal malees		
Summer Autumn Winter Spring	Summer Autumn Winter Spring		
0.908 1.125 0.708 1.258	0.877 1.136 0.677 1.309		
	0.077 1.150 0.077 1.507		
	S.I for Summer = $\frac{0.908 + 0.877}{2} \approx 0.89$		
	S.I for Winter = $\frac{0.708 + 0.677}{2} \approx 0.69$		
	2		
	S.I for Autumn = $\frac{1.125 + 1.136}{2} \approx 1.13$		
	S.I for Spring $=\frac{1.258+1.309}{2} \approx 1.28$		
•	(2 marks)		
b.			
251			
deseasonalised figure -221 ± 120			
deseasonalised figure = $321 \div 1.28$ ≈ 250.781			
≈ 251			
(1 montr)			
(1 mark)			

Recursion and financial modelling

Question 5

a.		b.
\$27000		$Q_1 = 0.91 \times 27000 = 24570$
	(1 mark)	$Q_2 = 0.91 \times 24570 = 22358.70$ (2 marks)
с.		d. 9 years
100 - 91 = 9%	(1 mark)	By continuing to multiply by 0.91, we get $Q_8 = 12696.8 \dots$ $Q_9 = 11554.1 \dots$ Alternatively, solving the equation $27000 \times 0.91^n \le 12000$ gives $n \ge 8.5984 \dots$ Now in this problem, <i>n</i> takes integral values, so n = 9. (1 mark)
e. $0 = 37000 \times 0.01^{R}$		f. \$1831
$Q_n = 27000 \times 0.91^n$	(1 mark)	$Q_3 = 20346.417 \dots$ During the fourth year, the machine will depreciate by 9% of 20346.417 ie. \$1831 to the nearest dollar. (1 mark)

a. \$9	b.
$340 \times 5 = 1700$ pieces quilted in 5 years Depreciation per piece	Each year, depreciation = $9 \times 340 = 3060$ $V_0 = 36000, V_{n+1} = V_n - 3060$
$=\frac{36000-20700}{1700}=9$	(1 mark)
(1 mark)	

Recursion and financial modelling

Question 6 (continued)

с.
3782
Depreciation = 36000 - 1962 = 34038
$34038 \div 9 = 3782$
(1 mark)

a.	b.
\$ 486322.40	\$435
Use finance solver technology:	Find the balance after six years:
N = 108 I = 6.6 PV = -247000 PMT = -270 FV = ? P/Y = 12 C/Y = 12 This gives $FV = 486322.404487$	N = 72 I = 6.6 PV = -247000 PMT = -270 FV = ? P/Y = 12 C/Y = 12 This gives $FV = 390384.388166$
(1 mark)	and make this the present value. He has three years, at 6.4%, to build his account to \$490000

Module 1 – Matrices

Question 1

a.		b.	
\$170	(1 mark)	3×1	(1 mark)
с.			
Q will be a 1 × 3 matrix giving the each type of quilt to be stitched.	numbers of		
[2 3 0]	(1 mark)		

b .
$\begin{bmatrix} a \end{bmatrix} \begin{bmatrix} 23 & 16 & 2 \end{bmatrix}^{-1} \begin{bmatrix} 4615 \end{bmatrix} \begin{bmatrix} 45 \end{bmatrix}$
$b = 18 \ 22 \ 1 \ 5190 = 185$
$\begin{bmatrix} c \end{bmatrix} \begin{bmatrix} 32 & 10 & 2 \end{bmatrix} \begin{bmatrix} 3910 \end{bmatrix} \begin{bmatrix} 310 \end{bmatrix}$
<i>b</i> = \$185
(1mark)

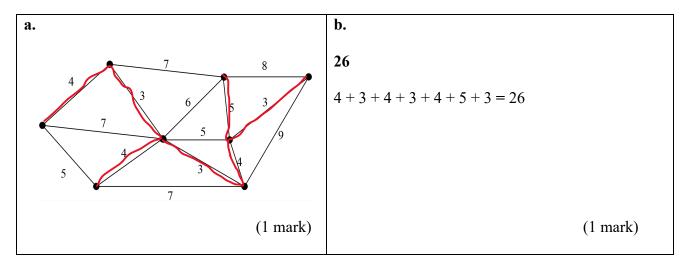
Module 1 – Matrices

a.	b.
$0.2 \times 60 + 0.2 \times 100 + 0.1 \times 80 = 40$	$0.3 \times 60 = 18$ (1 mark)
(1 mark)	
с.	d.
$0.5 \times 60 + 0.7 \times 100 + 0.3 \times 80 = 124$	54.9%
(1 mark)	$0.5 \times 124 = 62$ $\frac{62}{113} \times 100 = 54.8672 \dots$
	(1 mark)
е.	
$\frac{1.1}{1000000000000000000000000000000000$	
240 (1 mark)	

Module 1 – Matrices

a.	
300 + m - 500 + 100 = 0 m = 100	
(1 mark)	
b.	
647 Use technology to find the state matrix for 2022, th substitute that state matrix into the recurrence relation find the state matrix for 2023. Lola is expected to stock 647 reels of Polycot in 20	ion to $\begin{bmatrix} 0.3 & 0.7 & 0.8 & 0.3 \\ 0.2 & 0.1 & 0.2 & 0.1 \end{bmatrix} \begin{bmatrix} 300 \\ 400 \end{bmatrix} \begin{bmatrix} 300 \\ 100 \end{bmatrix} \begin{bmatrix} 390 \\ 370 \end{bmatrix}$
(1 mark)	

Module 2: Networks and decision mathematics


Question 1

a.	b.
19 + 17 + 18 = 54	19 + 21 + 18 = 58
(1 mark)	(1 mark)
	(T mark)
с.	
53	
Maximum flow = minimum cut Minimum cut = $18 + 17 + 18$ or $19 + 17 + 17$	
Both make 53.	
(1 mark)	

a.	b.
3 (vertices B, G and H)	65 km
(1 mark)	B-A-I-F-G (1 mark)
с.	d.
F	D-C-B-A-I-H-G-F-E-D
The Eulerian trail must end at the other odd vertex. E and F are the only odd vertices.	(1 mark)
(1 mark)	
Hamiltonian cycle	
(1 mark)	

Module 2: Networks and decision mathematics

a.	b.
a. B-D-C-E-H-J (1mark)	 b. 4 hours The current earliest completion time is 29 hours. Any one of the activities on the critical path can be reduced by 4 hours, making the completion time 25 hours. Reducing one of these activities by more than 4 hours creates a new critical path B-G-I-J taking 25 hours also. So the maximum possible time reduction for the job is 4 hours.
	(1 mark)

Module 3: Geometry and measurement

Question 1

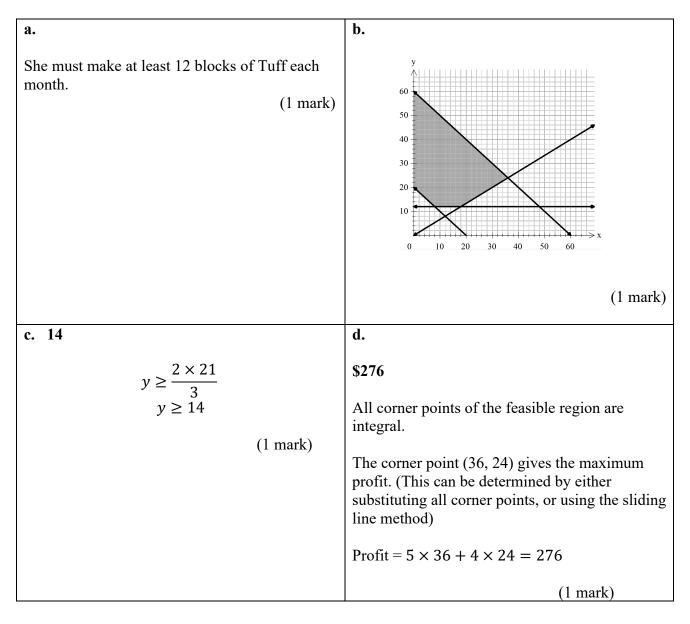
a. $d = \sqrt{125^2 + 84^2} = 150.6 \ cm$	b. $TSA = 2(125 \times 84 + 125 \times 95 + 95 \times 84)$ $= 60710 \ cm^2$
(1 mark)	(1 mark)
c. 20 cm 84 cm The height of the triangular end of the prism $= \frac{125 - 85}{2} = 20$ So, Volume = $\frac{84 \times 20}{2} \times 95 = 79800$ (1 mark)	d. 837900 cm ³ Volume of interlocking block = Volume of rectangular prism – 2 × 79800 = (125 × 84 × 95) – 159600 = 837900
	(1mark)

a. \triangle ABC and \triangle ADE are similar For the volume of the upper section to be one quarter of the whole volume,	b. $DE = 2 \times 2.5 = 5m$
area of \triangle ABC : area of \triangle ADE = 1 : 4 length AB : length AD = $\sqrt{1}$: $\sqrt{4}$ = 1: 2 length AB = $\frac{3.6}{2}$ = 1.8 so length BD = 3.6 - 1.8 = 1.8 m Hint: The prisms are not similar as not all three dimensions are in the same ratio.	(1 mark)
(1 mark)	
$\frac{c.}{\frac{5\times 3.6}{2}} \times 6 = 54 \text{ m}^3$ (1 mark)	

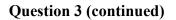
Module 3: Geometry and measurement

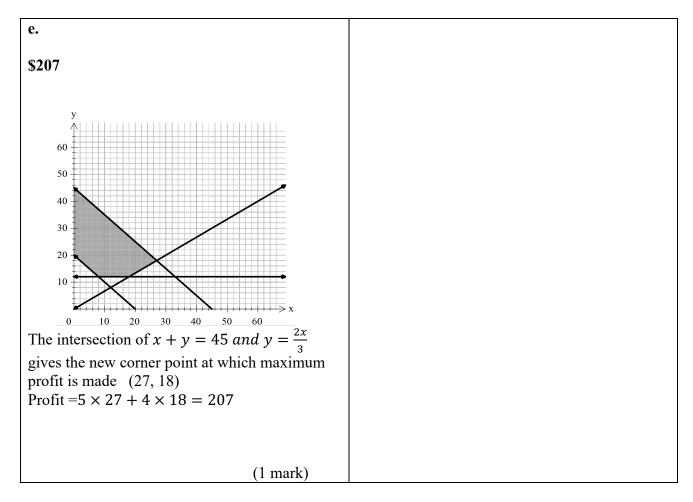
a.	b.
Latitude is taken from the equator as 0°. Windy Squalls is only 48° from the equator compared to Shaky Rock being 54° from the equator.	670 km
	$6400 \times \frac{\pi}{180} \times 6^{\circ} \approx 670.2$
(1 mark)	(1 mark)
c. (i)	c. (ii)
$radius_{small circle} = 6400 \times \cos 54^{\circ}$ $= 3761.82 \dots$ ≈ 3762	Difference in longitude = $51 - 6 = 45^{\circ}$ Shortest small circle distance = $3762 \times \frac{\pi}{180} \times 45 = 2954.667 \dots$ $\approx 2955 km$
Could also use sin 36° (1 mark)	(1 mark)
d.	
Lonely Shoal is 45° further west than Shaky Rock, so is three hours behind. At 7:52 am ,Tuesday 13 th at Lonely Shoal, the time is 10:52 am on Tuesday 13 th at Shaky Rock.	
11:15 pm to 10:52 am is 11 hours 37 minutes	
(1 mark)	

Module 4: Graphs and relations



a.	b.
80 70 60 50 40 40 20 10 20 10 20 30 40 10 20 30 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 10 10 20 30 30 40 40 40 40 10 10 20 30 30 40 40 40 40 10 10 10 20 10 10 20 10 10 20 10 10 10 20 10 10 10 20 10 10 20 30 30 40 40 40 10 10 10 20 30 30 40 30 40 10 10 10 20 30 30 40 10	\$50 Note that the charge of \$60 is for more than but not including 20 pages as indicated by the open circle. (1 mark)
(1 mark)	
с.	d.
40 + 50 + 70 = \$160	\$8
	Magic Web: $Charge = 4.00 + 2.00 \times 19 = 42 Wanda's Web: from step graph, \$50
(1 mark)	Saving of \$8 (1 mark)
е.	
28 pages	
Wanda's Web Design charges \$60	
Solving the equation $60 = 4.00 + 2.00 \times n$ gives $n = 28$	
(1mark)	


Module 4: Graphs and relations


Question 2

a.	b.
1105 m	2762.5
When t = 17, D = $65 \times 17 = 1105$ (1 mark)	Substitute (35, 1625) into the equation D = k - 32.5t $1625 = k - 32.5 \times 35$ k = 2762.5 (1 mark)

Module 4: Graphs and relations

End of Suggested Solutions 2021 VCE Further Mathematics Trial Examination 2

Kilbaha Education	Tel: (03) 9018 5376
PO Box 2227	
Kew Vic 3101	kilbaha@gmail.com
Australia	https://kilbaha.com.au