GENERAL MATHEMATICS

Units 3 & 4 – Written examination 1

2024 Trial Examination SOLUTIONS

DATA ANALYSIS

Question 1

Answer: **D**

Explanation:

The second variable has to be numerical.

Question 2

Answer: B

Explanation:

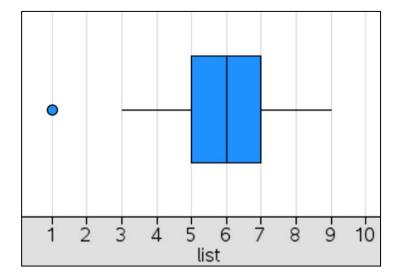
solve
$$\left(\frac{180000-240000}{s} = -0.85, s\right)$$

 $s = 70588.2352941$

© TSSM 2024 Page 1 of 13

Question 3

Answer: **D**


Explanation:

The lower quartile could be equal to the minimum.

Question 4

Answer: C

Explanation:

Question 5

Answer: E

Explanation:

Approximately symmetric with an outlier.

© TSSM 2024 Page 2 of 13

Question 6

Answer: **D**

Explanation:

2 standard deviations from the mean $\frac{95}{100} \times 1800 = 1710$

Question 7

Answer: B

Explanation:

$$\frac{(6 \times 24) + x}{7} = 25 \to x = 31$$

Question 8

Answer: A

Explanation:

Modal CI of given histogram is 3 - 3.5Modal CI of sales is $10^3 - 10^{3.5} = 1000 - 3162$

Question 9

Answer: **E**

Explanation:

Since the slope is positive, the *r*-value is between 0 and 1 (both inclusive)

© TSSM 2024 Page 3 of 13

Question 10

Answer: A

Explanation:

height' = 1.03m from data

using the least squares equation height = $0.1203 + (0.4316 \times 2.1) = 1.027m$

Question 11

Answer: C

Explanation:

$$\frac{15+34+181}{500} \times 100 = 46\%$$

Question 12

Answer: **D**

Explanation:

A significant change in % from low to medium to high has to be evident for an association.

© TSSM 2024 Page 4 of 13

Question 13

Answer: A

Explanation:

Solve on CAS: $11.2 = -2.7 + 15.6 \times log_{10}(age)$

Question 14

Answer: C

Explanation:

Median(330, 300, 320, 310, 330, 340, 350) = 330

Question 15

Answer: B

Explanation:

Create a list on CAS Median = 320

Question 16

Answer: **D**

Explanation:

$$\frac{1}{0.75} \approx 1.333$$

33% increase

RECURSION AND FINANCIAL MODELLING

Question 17

Answer: **E**

Explanation:

$$K_1 = 1 - 6 = -5$$

 $K_2 = 1 - (-5) = 6$

Question 18

Answer: B

Explanation:

$$\frac{48}{0.02} = 2400$$

Question 19

Answer: A

Explanation:

Depreciated amount each year is \$48.

Question 20

Answer: B

Explanation:

$$\frac{45000 - 9000}{8} = 4500$$

Annual depreciation rate = $\frac{4500}{45000} \times 100 = 10\%$

Question 21

Answer: B

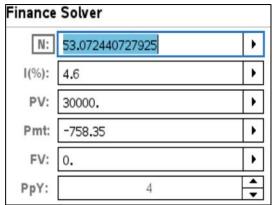
Explanation:

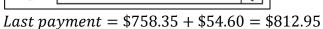
$$9000 = 45000 \left(1 - \frac{r}{100}\right)^8 \to r = 18.22\%$$

Value after six years =
$$45000 \times \left(1 - \frac{18.22}{100}\right)^6 = $13461.55$$

Question 22

Answer: C


Explanation:


$$1 + \frac{r}{400} = 1.0115 \rightarrow r = 4.6, \ eff(4.6,4) = 4.68\%$$

Question 23

Answer: **D**

Explanation:

inance	Solver	
N:	53.	•
I(%):	4.6	•
PV:	30000.	•
Pmt:	-758.35	•
FV:	-54.59933252688	•
PpY:	4	_
. 1,		

© TSSM 2024 Page 7 of 13

Question 24

Answer: C

Explanation:

$$P_1 = 1.08a - 1200$$

 $\rightarrow 8\% \ of \ a = 1200$

$$0.08a = 1200$$

$$0.08a = 120$$

$$a = \frac{1200}{0.08}$$

$$\therefore a = 15000$$

MATRICES

Question 25

Answer: A

Explanation:

 v_{21} = Element in row 2 and column 1.

Question 26

Answer: **D**

Explanation:

$$V\begin{bmatrix} 1\\1\\1\\1\\1\\1 \end{bmatrix}$$
 results in row elements being added.

Question 27

Answer: B

Explanation:

ſ ₁	٥	٥	Ο	٥	٥٦	[,]	[,]
1	0	1	0	0	0	8	[g]
0	1	1	0	0	0	<i>'</i>	0
0	1	0	0	0	0.	0	7
0	0	0	1	0	0	u	и
0	0	0	0	0	1	p	s
0	0	0	0	1	0 0 0 0 1 0	s]	p

Unchanged- g, u

Question 28

Answer: C

Explanation:

$$\begin{bmatrix} 0.5 & 0. & 0.8 \\ 0.25 & 0.5 & 0 \\ 0.25 & 0.5 & 0.2 \end{bmatrix}^{42} = \begin{bmatrix} 0.471 & 0.471 & 0.471 \\ 0.235 & 0.235 & 0.235 \\ 0.294 & 0.294 & 0.294 \end{bmatrix}$$

Question 29

Answer: **E**

Explanation:

$$\begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \end{bmatrix} = \begin{bmatrix} 1 - 1^2 & 1 - 2^2 & 1 - 3^2 \\ 2 - 1^2 & 2 - 2^2 & 2 - 3^2 \end{bmatrix} = \begin{bmatrix} 0 & -3 & -8 \\ 1 & -2 & -7 \end{bmatrix}$$

Question 30

Answer: A

Explanation:

Try any column matrix here:

Inverse only exists when the matrix is a square matrix and determinant is non-zero.

Question 31

Answer: **D**

Explanation:

0.3 represents survival rate to the next age group.

Question 32

Answer: A

Explanation:

$$\begin{bmatrix} 0.3 & 0.6 & 0. & 0.7 \\ 0.4 & 0.2 & 0.2 & 0.1 \\ 0. & 0.1 & 0.3 & 0.1 \\ 0.3 & 0.1 & 0.5 & 0.1 \end{bmatrix} \begin{bmatrix} 80 \\ 55 \\ 45 \\ 60 \end{bmatrix} \begin{bmatrix} 99. \\ 58. \\ 25. \\ 58. \end{bmatrix}$$

$$\begin{bmatrix} 0.3 & 0.6 & 0. & 0.7 \\ 0.4 & 0.2 & 0.2 & 0.1 \\ 0. & 0.1 & 0.3 & 0.1 \\ 0.3 & 0.1 & 0.5 & 0.1 \end{bmatrix} \begin{bmatrix} 99. \\ 58. \\ 25. \\ 58. \end{bmatrix}$$

$$\begin{bmatrix} 105. \\ 62. \\ 19.1 \\ 53.8 \end{bmatrix}$$

$$\frac{20}{100} \times 58 = 11.6$$

$$\frac{11.6}{62} \times 100 = 18.7$$

NETWORKS AND DECISION MATHEMATICS

Question 33

Answer: C

Explanation:

$$v = 5, e = 4, f = 1 \rightarrow v + f = 6 = e + 2.$$

Question 34

Answer: **D**

Explanation:

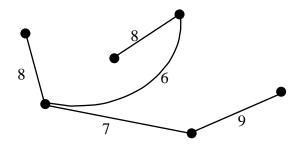
Definition of minimum spanning tree.

Question 35

Answer: B

Explanation:

	Task 1	Task 2	Task 3	Task 4
Jay	4	0	0	2
Kai	2	1	3	0
Lee	8	4	0	4
Mario	3	0	0	0


	Task 1	Task 2	Task 3	Task 4
Jay	2	0	0	2
Kai	0	1	3	0
Lee	6	4	0	4
Mario	1	0	0	0

Optimal allocation reached. Lee- 3, Jay- 2, Kai- 1, Mario- 4 Minimum time = 6 + 6 + 9 + 9 = 30

Question 36

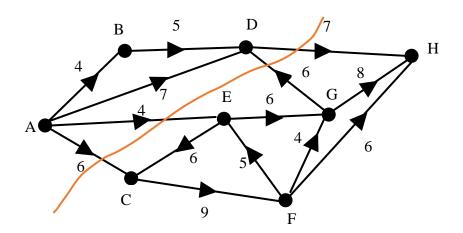
Answer: B

Explanation:

Minimum weight = 8 + 7 + 8 + 6 + 9 = 38

Question 37

Answer: **E**


Explanation:

 $5 + f = e + 2 \rightarrow e = f + 3$

Question 38

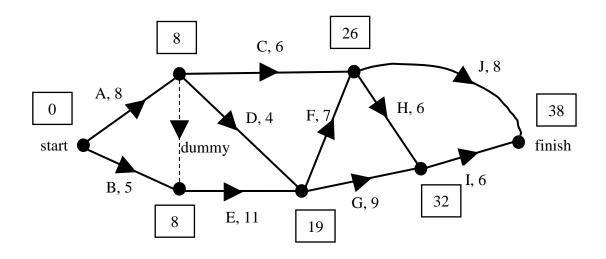
Answer: **B**

Explanation:

© TSSM 2024

Question 39

Answer: A


Explanation:

Make sure all predecessor activities are included.

Question 40

Answer: C

Explanation:

© TSSM 2024 Page 13 of 13