

VCE Mathematical Methods CAT 3 Trial Examination Question and Answer Booklet

Question 1

Point C is 70 metres horizontally from the y-axis. The platform is 5 m long. in metres above the ground and x is the horizontal distance in metres from the platform. from point A to point C can be modelled by the equation $y = \frac{1}{50}x^2 - 2x + 50$, where y is the height The diagram above shows part of the design for an indoor ski ramp and platform. The curved surface State the coordinates of points A and C.

Find the gradient of the ramp when the skier is	Find t	ġ
l mark		
Write an expression in terms of x for the gradient of the ramp at any point.	Write	G
2 marks	İ	
Calculate the coordinates of B (assume B is at ground level).	Calcu	ָדַ.
2 marks		

=

at point C.

l mark

1 mark

10 m horizontally from the y-axis.

	Calculate the cross-sectional area enclosed i. directly under the horizontal platform.		At what angle (to the nearest degree) to the horizontal does the skier leave the ramp?
1 mark		2 marks	ramp?

VCE Mathematical Methods CA1 3 Trial Examination Question and Answer Booklet

To project the skiers to a higher level, the designers of the ramp were able to change the path of the from the entire curved surface of the ramp to the ground. 3 marks

ski run from point B to point C by raising point C to 10 metres above the ground. This change reduced the horizontal length of the run by 2 metres, and created a new path from point C to point D which followed the equation

 $y = A(x - 50)^3$

Determine the exact value of A (in fraction form).

Determine the exact new area under the ramp from C to D2 marks

7

3 marks

Total 18 marks

٠ ١

A C.E. Salamana	VCE Mathematical	
	Methods CALULI	
		int Everylingthon Ch
		APPROPRIES

A colony of foxes was established on a secluded island. Due to food constraints the island can only support a certain number of foxes.

A model for the number of foxes (N) at any time (t months) after their introduction is

$$N = \frac{2000}{1 + 24e^{-0.1t}}$$

What was the initial population of foxes?

io.	5	ç	₽
4 marks Calculate the rate of change (to 2 decimal places) of population after 10 months of colonization.	I mark Find an expression for the rate of change of population with respect to time.	What was the fox poulation 10 months after the colony was established? (Round your answer to the nearest whole number.)	1 mark What was the theoretical maximum population of foxes according to this model?

2 marks

VCE Mathematical Methods CAT 3 Trial Examination Question and Answer Booklet

3	£
•	ē
5.	2
7	ğ
<u></u>	ă
۲.	3
7	ate
Ţ	¥
ĕ	달
a	4
5	<u>Ş</u>
=	=
ğ	õ
ä	n.
The model for the population becomes	<u>د</u>
•	=
	릀
	ğ
	5
	S.
	<u></u>
	as S
	Ĉ
	్ట్ల
	Ę.
	8
	Ď,
	- 5
	₽.
	Sh
	After approximately the 49th month, an infectious disease begins to diminish the population
	ਝੁੱ
	ģ
	ula
	<u> </u>
	~ ~

$$N = 5.8t^2 + Bt + 24200$$

where B is a constant.

to increase once again. It is observed that the population continues to decrease until the 64th month at which time it begins

;
Determine
H
value
of B
8

2 marks Total 13 marks	Determine the minimum population using the new model (to the nearest whole fox).	2 m	
2 marks 13 marks		2 marks	

Question 3

An electrical signal is sent from A to B for each of the components shown below:

Component X	A S_1 S_2 B
Component Y	A S ₁ S ₂

For a signal to be received at B, the following conditions must apply:

Component Y Component X At least one of the switches, S_1 or S_2 , must work. Both switches, S_1 and S_2 , must work.

of each other. The probability of any switch working is p. It should be assumed that S_1 and S_2 work independently

- Show that the probability that a signal at B is received for
- component X is p^2 .

	=			
	component Y is $2p - p^2$.			
l mark		l mark		

- Ġ If p = 0.7,
- i. find the probability that a signal is received at B for component Y.

İ		,	-
			I mark and a component is randomly selected, find the probability that component X was selected given that a signal is received at B.
			<u>a</u> .
	-		roba
	ł		bility
	ļ		that
	ļ	ĺ	cor
			nponen
			× -
	ĺ		mark (was

AL BURNALE

,

2 marks

$2(1-2p+p^2)^{10} \le 1$		
one component Y (from a batch of 10) will receive a signal at B, satisfies the equation	-	•
Crambo amollos value of a for which there is at least a 50% chance that at least	•	-
2 marks	!	
	1	
$Pr(N \ge 2)$	Ħ	
mark	!	

	Hence find the smallest value of p .				
	, 110	3 marks			

		value of p .

N
_
₽
ᆱ
ᅔ

It is found that the life span for component Y is normally distributed with a mean of 110 hours and standard deviation of 4 hours.

- e. Find the probability that a randomly selected component Y

will last at least 108 hours but no more than 114 hours. 2 marks

2 marks

will last at least 115 hours given that it has lasted 111 hours.

2 marks

:-

Find an approximate 95% confidence interval for the mean life span of component Y parts.

l mark Total 21 marks

Working Space

VCE Mathematical Methods CAT 3 Trial Examination Question and Answer Booklet

Question 4

Part of the graph of $f: [0, \infty) \to \mathbb{R}$, where $f(x) = e^{-\frac{x}{2}} \cdot \cos x$, is shown below.

ė Find the coordinates of A and B.

Ģ Show that a stationary point occurs where $\tan x = -\frac{1}{2}$.

2 marks

Find, correct to three decimal places, the coordinates of the first local minimum of f.

l mark

Show that if $\frac{d}{dx} \left[e^{-\frac{x}{2}} (a\cos x + b\sin x) \right] = e^{-\frac{x}{2}} \cos x$, then $a = -\frac{2}{5}$ and $b = \frac{4}{5}$.

힘

	1 1	1 1	F			1 1	l
3 marks Total 14 marks			4 marks Hence find the exact area of the shaded region in the diagram above.				
88	1 1	i I	· 云	1 1	1 1	1 1	ı

•

ς.

`