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Mathematical Methods Formulas

Mensuration

area of a trapezium: 1
2 a + b( )h volume of a pyramid: 1

3 Ah

curved surface area of a cylinder: 2πrh volume of a sphere: 4
3 πr3

volume of a cylinder: πr2h area of a triangle: 1
2 bc sin A

volume of a cone: 1
3 πr2h

Calculus

d
dx xn( ) = nxn−1 xndx = 1

n + 1 xn+1 + c, n ≠ −1∫
d

dx eax( ) = aeax eaxdx = 1
a eax + c∫

d
dx loge x( ) = 1

x
1
x dx = loge x + c,for x > 0∫

d
dx sin ax( )  = a cos ax sin ax dx∫ = − 1

a  cos ax + c

d
dx cos ax( )  = – a sin ax cos ax dx∫ = 1

a  sin ax + c

d
dx tan ax( ) = a

cos2 ax
= asec2 ax

product rule:
d

dx uv( ) = u
dv
dx + v

du
dx

chain rule:
dy
dx = dy

du
du
dx quotient rule:

d
dx

u
v

 
  

 
  =

v
du
dx − u

dv
dx

v2

approximation: f x + h( ) ≈ f x( ) + h ′ f x( )

Statistics and Probability

Pr(A) = 1 – Pr(A′) Pr(A ∪ B) = Pr(A) + Pr(B) – Pr(A ∩ B)

Pr(A|B) = 
Pr A ∩ B( )

Pr B( )
mean: µ  = E(X) variance:  var(X) = σ 2 = E((X – µ)2) = E(X2) – µ2

Discrete distributions

Pr(X = x) mean variance

general p(x) µ  = Σ x p(x) σ 2 = Σ (x – µ)2 p(x)

= Σ x2p(x)  –  µ2

binomial nCx px(1 – p)n–x np np(1 – p)

hypergeometric
DCx

N − DCn− x
NCn

n
D
N n

D
N 1 − D

N
 
  

 
  

N − n
N − 1

Continuous distributions

normal If X is distributed N(µ , σ 2) and Z = X − µ
σ , then Z is distributed N(0, 1).



x 0 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9

0.0 .5000 .5040 .5080 .5120 .5160 .5199 .5239 .5279 .5319 .5359 4 8 12 16 20 24 28 32 36

0.1 .5398 .5438 .5478 .5517 .5557 .5596 .5636 .5675 .5714 .5753 4 8 12 16 20 24 28 32 35

0.2 .5793 .5832 .5871 .5910 .5948 .5987 .6026 .6064 .6103 .6141 4 8 12 15 19 23 27 31 35

0.3 .6179 .6217 .6255 .6293 .6331 .6368 .6406 .6443 .6480 .6517 4 8 11 15 19 23 26 30 34

0.4 .6554 .6591 .6628 .6664 .6700 .6736 .6772 .6808 .6844 .6879 4 7 11 14 18 22 25 29 32

0.5 .6915 .6950 .6985 .7019 .7054 .7088 .7123 .7157 .7190 .7224 3 7 10 14 17 21 24 27 31

0.6 .7257 .7291 .7324 .7357 .7389 .7422 .7454 .7486 .7517 .7549 3 6 10 13 16 19 23 26 29

0.7 .7580 .7611 .7642 .7673 .7703 .7734 .7764 .7793 .7823 .7852 3 6 9 12 15 18 21 24 27

0.8 .7881 .7910 .7939 .7967 .7995 .8023 .8051 .8078 .8106 .8133 3 6 8 11 14 17 19 22 25

0.9 .8159 .8186 .8212 .8238 .8264 .8289 .8315 .8340 .8365 .8389 3 5 8 10 13 15 18 20 23

1.0 .8413 .8438 .8461 .8485 .8508 .8531 .8554 .8577 .8599 .8621 2 5 7 9 12 14 16 18 21

1.1 .8643 .8665 .8686 .8708 .8729 .8749 .8770 .8790 .8810 .8830 2 4 6 8 10 12 14 16 19

1.2 .8849 .8869 .8888 .8907 .8925 .8944 .8962 .8980 .8997 .9015 2 4 6 7 9 11 13 15 16

1.3 .9032 .9049 .9066 .9082 .9099 .9115 .9131 .9147 .9162 .9177 2 3 5 6 8 10 11 13 14

1.4 .9192 .9207 .9222 .9236 .9251 .9265 .9279 .9292 .9306 .9319 1 3 4 6 7 8 10 11 13

1.5 .9332 .9345 .9357 .9370 .9382 .9394 .9406 .9418 .9429 .9441 1 2 4 5 6 7 8 10 11

1.6 .9452 .9463 .9474 .9484 .9495 .9505 .9515 .9525 .9535 .9545 1 2 3 4 5 6 7 8 9

1.7 .9554 .9564 .9573 .9582 .9591 .9599 .9608 .9616 .9625 .9633 1 2 3 3 4 5 6 7 8

1.8 .9641 .9649 .9656 .9664 .9671 .9678 .9686 .9693 .9699 .9706 1 1 2 3 4 4 5 6 6

1.9 .9713 .9719 .9726 .9732 .9738 .9744 .9750 .9756 .9761 .9767 1 1 2 2 3 4 4 5 5

2.0 .9772 .9778 .9783 .9788 .9793 .9798 .9803 .9808 .9812 .9817 0 1 1 2 2 3 3 4 4

2.1 .9821 .9826 .9830 .9834 .9838 .9842 .9846 .9850 .9854 .9857 0 1 1 2 2 2 3 3 4

2.2 .9861 .9864 .9868 .9871 .9875 .9878 .9881 .9884 .9887 .9890 0 1 1 1 2 2 2 3 3

2.3 .9893 .9896 .9898 .9901 .9904 .9906 .9909 .9911 .9913 .9916 0 1 1 1 1 2 2 2 2

2.4 .9918 .9920 .9922 .9925 .9927 .9929 .9931 .9932 .9934 .9936 0 0 1 1 1 1 1 2 2

2.5 .9938 .9940 .9941 .9943 .9945 .9946 .9948 .9949 .9951 .9952 0 0 0 1 1 1 1 1 1

2.6 .9953 .9955 .9956 .9957 .9959 .9960 .9961 .9962 .9963 .9964 0 0 0 0 1 1 1 1 1

2.7 .9965 .9966 .9967 .9968 .9969 .9970 .9971 .9972 .9973 .9974 0 0 0 0 0 1 1 1 1

2.8 .9974 .9975 .9976 .9977 .9977 .9978 .9979 .9979 .9980 .9981 0 0 0 0 0 0 0 1 1

2.9 .9981 .9982 .9982 .9983 .9984 .9984 .9985 .9985 .9986 .9986 0 0 0 0 0 0 0 0 0

3.0 .9987 .9987 .9987 .9988 .9988 .9989 .9989 .9989 .9990 .9990 0 0 0 0 0 0 0 0 0

3.1 .9990 .9991 .9991 .9991 .9992 .9992 .9992 .9992 .9993 .9993 0 0 0 0 0 0 0 0 0

3.2 .9993 .9993 .9994 .9994 .9994 .9994 .9994 .9995 .9995 .9995 0 0 0 0 0 0 0 0 0

3.3 .9995 .9995 .9995 .9996 .9996 .9996 .9996 .9996 .9996 .9997 0 0 0 0 0 0 0 0 0

3.4 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9998 0 0 0 0 0 0 0 0 0

3.5 .9998 .9998 .9998 .9998 .9998 .9998 .9998 .9998 .9998 .9998 0 0 0 0 0 0 0 0 0

3.6 .9998 .9998 .9999 .9999 .9999 .9999 .9999 .9999 .9999 .9999 0 0 0 0 0 0 0 0 0

3.7 .9999 .9999 .9999 .9999 .9999 .9999 .9999 .9999 .9999 .9999 0 0 0 0 0 0 0 0 0

3.8 .9999 .9999 .9999 .9999 .9999 .9999 .9999 .9999 .9999 .9999 0 0 0 0 0 0 0 0 0

3.9 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0 0 0 0 0 0 0 0 0

END OF FORMULA SHEET

Table 1 Normal distribution – cdf



Multiple-Choice Answer Sheet

Student’s Name

Circle the letter that corresponds to each answer.

1. A B C D E
2. A B C D E
3. A B C D E
4. A B C D E
5. A B C D E
6. A B C D E
7. A B C D E
8. A B C D E
9. A B C D E

10. A B C D E
11. A B C D E
12. A B C D E
13. A B C D E
14. A B C D E
15. A B C D E
16. A B C D E
17. A B C D E
18. A B C D E
19. A B C D E
20. A B C D E
21. A B C D E
22. A B C D E
23. A B C D E
24. A B C D E
25. A B C D E
26. A B C D E
27. A B C D E
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Part I (Multiple-choice questions)
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Question 1

The range of the function f(x) = 
    

−
+( )

+2
3

32x
  is

A. (–∞, 3]
B. (3, ∞)
C. R\{–3}
D. (–∞, –3)
E. (–∞, 3)

Question 2

                                         a b
x

y

c

The equation of the graph shown could be

A. y = (x– a)(x– c)2 – b

B. y = (x+ a)2(x – c)

C. y = –(x – a)(x – c)(x – b)

D. y = (c – x)(x – a)2

E. y = (x – a)(x – c)2
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Question 3

x 0.1 0.5 1 2 3 4 5 10

y – 0.61 2.6 4 5.4 6.2 6.8 7.2 8.6

The rule connecting y and x is closest to

A.     y x= + 4

B.     y x= +2 4

C.     y ex= +2 4

D.     y xe= +2 4log ( )

E.     y xe= +log ( ) 4

Question 4

y

x

x = a

y = b

The equation of the graph shown could be

A.
    
y x a b= − +1

B.
    
y a x b= − +1

C.
    
y x b a= − − +1

D.
    
y x a b= + +1

E.
    
y x a b= − − −1
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Question 5

Which of the following functions does not have an inverse function?

A.      f R f x x:( , ] , ( ) ( )−∞ − → = − +4 5 4 72

B.     f R R f x x: , ( ) ( )→ = − + +2 1 33

C.     f R f x x:[ , ) , ( ) ( )2 9 3 64∞ → = − −

D.     f R f x x:[ , ] , ( )− → = −3 0 9 2

E.

    
f x

x for x

x for x
( )

( , ]

( , ]
=

∈ −∞

+ ∈ ∞







2 3

3 32

Question 6

If  f(x) =  e(x – 1) + 5  then f –1(x) =

A. logex – 4

B. loge (x – 5) + 1

C. loge x – loge5 + 1

D. e(1 – x)  + 0.2

E.
    

1 51e x( )− +

Question 7

Consider the equation (x2 + a) (x3 + b) (x + c)2  = 0, where a > 0,  b > 0 and c > 0, and a ≠ b ≠ c.
The number of distinct real solution(s) this equation has is

A. 1
B. 2
C. 3
D. 4
E. 5
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Question 8

The term independent of a in the expansion of  
    

a b
ab

3
2

161−



  is

A.
    
16

12 20
1C

b
B. b20

C.
    

1
20b

D. –
    
16

12 20
1C

b

E.
    
−16

12 24
1C

b

Question 9

The exact solution of the equation 25x = 5x + 2 is

A.
    
x = log

log
2
5

B.
    
x = log

log
5
2

C. x = –1
D. x = 0
E. x = 2

Question 10

If loga(3r)6 – 3loga(9r) – loga(r
4) =2, where a > 0, then r equals

A.
    

3
2a

B.
    

1
3 2a

C. a2

D.
    

1
2a

E. 0.5
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Question 11

The height of the tide, h metres, at the entrance to a port is given by

h = 3sin(
    
πa
4

t) + 8

where t is the number of hours after midnight and a is a positive integer.
The number of times the height is 10 m within the first day is

A. 3
B. 6

C.
    
6
a

D. 3a
E. 6a

Question 12

If m is the smallest solution and n the largest solution to cos 2x –   3 sin 2x = 0  for
{x: – π ≤ x ≤ π} then m + n is

A.
  
− π

3

B.
  
π
6

C.
  
π
3

D.
  
4
3
π

E.
  
3
2
π

Question 13

Which of the following statements is false for the graph of

y = tan 0.5x

A. The graph repeats itself every 2π units.

B. The gradient at (
  
π
2 ,1) is 1.

C. The vertical asymptotes have equation x = (2k + 1)π, k ∈ J.

D. The graph has a stationary point at x = 2kπ, k ∈ J.

E. The range of y is R.
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Question 14

The average rate of change of the function f(x) = 2x2 –3x + 4   between x = 1 and x = 3  is

A. 1
B. 3
C. 5
D. 9
E. 13

Question 15

The equation of the tangent to the curve y = ae–x at the point (0, a) is

A. y = ax + a
B. y = ax – a
C. y = a – x
D. y = a – ax
E. y = a + x

Question 16

If f(x) = 
    

x

x36 2−
 then f ′(x) equals

A.
    

−
−
36

36 2x

B.

    

36 2

36

2

2
3
2

−

−( )
x

x

C.
    

36

36 2 3
2( )− x

D.
    

−
−
x

x

2

236

E.
    

36
36 2− x
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Question 17

The derivative of tan(x2 +3) is

A. sec2(x2 +3)
B. tan(2x)
C. sec2(x2 +3) + tan(2x)
D. 2xsec2(x2 +3)
E. 2x + tan(x2 +3)

Question 18

For the function f (x) =     3 8 6 24 04 3 2x x x x f x− − + >, '( )  when x is

A.   ( , ] [ , )−∞ − ∪ ∞2 0

B.   [ , ] [ , )− ∪ ∞1 1 2

C.   [ , ]1 2

D.   ( , ] [ , )−∞ − ∪ ∞2 2

E.   ( , ) ( , )− ∪ ∞1 1 2

Question 19

                      

y

x
a b

The graph of f ′(x) is shown above. Which of the following equations could be the graph of y = f(x)?

A. y = (x – a)(x – b)
B. y = 0.5 (x2 – ax)(x2 – bx)
C. y = 0.5 (x2 – ax)(x2 – bx) + c, where c is a constant
D. y = x3  – (a + b)x2 + abx + c, where c is a constant

E. y = 
    
k x a b x abx c1

3
1
2

3 2− +( ) + +



 , where k and c are constants
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Question 20

The approximate area, in square units, bounded by the curve     y x= − 1, the x–axis and the lines
x = 1 and x = 3 using the four rectangles shown above is

A.   0 5 0 5 1 1 5 2. . .+ + +( )
B.   0 5 0 5 1 1 5. . .+ +( )
C.   0 5 1 1 5 2. .+ + +

D.
    

x dx−∫ 1
1

3

E.   3 2

Question 21

The shaded area for the graph may be determined by evaluating

A.

    

cos sin2 2
1
2

4

0

1
2

xdx xdx+∫ ∫
π

B.

    

cos sin2 2

8

4

0

8

xdx xdx+∫ ∫
π

π π

C.

    

sin cos2 2

8

4

0

8

xdx xdx+∫ ∫
π

π π

D.
    

(cos sin )2 2
0

4

x x dx−∫
π

E.
    

(sin cos )2 2
0

4

x x dx−∫
π

y = sin 2x

O
xπ

4

y

y = cos 2x
1

O
x

y

1 31.5 2 2.5

    y x= − 1
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Question 22

Two dice are rolled. The probability distribution for X, the difference between the numbers on the
dice, is given by

x 0 1 2 3 4 5

Pr(X = x)
  
6
36   

10
36   

8
36 a b

  
2

36

The probability that X is less than 2 given that X is less than 4 is

A.
  
8

18

B.
  
8

15

C.
  
12
17

D.
  
17
18

E.
  
2
3

Question 23

ITP is an autoimmune disease where the body destroys its own platelets. Long term studies have
shown that 80 per cent of adult ITP sufferers become chronic. If five adult ITP sufferers are randomly
selected, then the probability that most (i.e. more than half) of them will become chronic is

A.     
5

4C (0.8)4 0.2 + (0.8)5

B. (0.8)5

C.
    

4
3

5
3

4
4

5
4

C
C

C
C

+

D. 1 – [(0.2)5 +     
5

1C  0.8 (0.2)4]

E. 1 – [(0.2)5 +     
5

1C  0.8 (0.2)4 +     
5

2C  (0.8)2 (0.2)3]
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Question 24

Carlin decided to participate in a lucky dip at his local street festival. The box contained p CDs: q
of them were recent CDs and the rest were older. The CDs were wrapped separately in brown
paper. If Carlin was allowed to randomly select 3 CDs for his prize then the probability he would
get exactly 3 recent CDs, where     q ≥ 3 is

A.
    

q q q
p p p

−( ) −( )
−( ) −( )

1 2
1 2

B.
    

9
3

3

C
Cp q−

C.
    
p q

p
p q

pC 3

3 0





−





D.
    
p q

p
p q

pC 3

0 3





−





E.
    

p q

p

− C
C

3

3

Question 25

A committee of five is to be selected at random from r female and 500 male students, where r > 5.
If X represents the number of female students on the committee. Which one of the following is
true?

A. The E(X) using the binomial distribution is greater than the E(X) using the hypergeometric
distribution.

B. X can only be approximated using the binomial distribution if r is large.
C. X is a hypergeometric continuous random variable.
D. The Var(X) using the binomial distribution is the same as the Var(X) using the

hypergeometric distribution.

E. Pr(X = 2) 
    
≈ +





 +







5
2

2 3

500
500

500C r
r r
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Question 26

If 40% of teachers in a given country are over the age of 50 years, what is the probability that for
five randomly selected teachers at least three of them will be over 50 years of age?

A. 0.2304
B. 0.3174
C. 0.0230
D. 0.6400
E. 0.3072

Question 27

The heights of women are normally distributed with   µ = 162 cm and variance   σ2= 64, what is the
probability that a woman selected at random has a height greater than 180 cm?

A.   3.408 × 10–6

B.   0.0122
C.   0.9878
D.   0.5865
E.   0.3893
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Part II (Short Answer Questions)

Question 1

If y = loge(cos2x), find 
  
dy
dx

 and hence find     tan 2x dx∫ .

2 marks

Question 2

Given f x x( ) = , use calculus to find an approximate value for 15 9. .

     2 marks
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Question 3

a. Sketch the graph of y = sin(2x) on the above set of axes, for 
    
π π
2

3
2≤ ≤x

b. Sketch the graph of y, for     0 ≤ ≤x π  on the same set of axes, after a translation of 
  
π
2

units to the left and 1 unit up, followed by a dilation of a factor of 2 parallel to the
y-axis.

c. Write down the equation of your new graph.

           1 + 1 +1 = 3 marks

y

x
O π

2
π 2π3π

 2

4

3

2

1

–1

–2

–3

–4
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Question 4

a. Find the coordinates of the points of intersection of the graphs of  f(x) = x2  + 5x – 6
and  g(x) = 3x + 2.

b. Use calculus to find the area enclosed by f(x) and g(x).

     2 + 4 = 6 marks
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Question 5
The graphs of y = p(x) and y = q(x) are shown on the axes below.
On the same set of axes, sketch m(x) =p(x) + q(x).

          

p(x)

q(x)

y

x

2 marks
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Question 6
A water tank is being emptied and the volume of water (V litres) remaining in the tank after t
minutes is given by

V(t) = 3 (20 – t )3

a. What is the domain of this function?

b. Find an expression for the rate at which the volume of water in the tank is
changing at t minutes.

c. i.    At what rate is the tank emptying initially?

ii.   When is the tank emptying at a rate of 900 L/min?

 1 + 1 + 2 = 4 marks



MAV MATHEMATICAL METHODS EXAMINATION 1, 2001

© The Mathematical Association of Victoria Page 18

Question 7
The probability distribution for a discrete random variable X is

x 0 1 2 3 k

Pr(X = x) 0.1 0.2 0.3 0.2 0.2

where     k J∈ + .

a. Find Var(X) in terms of k.

b. If Var(X) = 7, determine the value of k.

1 + 1 = 2 marks
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Question 8
The heights of women are normally distributed. It is known that 6 per cent of women are taller
than 176 cm and 12 per cent shorter than 148 cm. Find the mean, in centimetres correct to one
decimal place, of this distribution.

3 marks
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