

ī.

Trial Examination 2001

VCE Mathematical Methods Units 3 & 4

Written Examination 1: Facts, skills and applications task

Suggested Solutions

levinin34exem1e01.tm

531-18**58-08**-1-

PART I

Question 1

We can make use of the turning point form to sketch the graph of $y = 1 - 2(x - 1)^2$. That is, $y = 1 - 2(x - 1)^2 = -2(x - 1)^2 + 1$

y (1, 1) (0, -1)

From the graph, the range is seen to be $(-\infty, 1]$.

Answer D

Question 2

Turning points at x = -2 and x = 2 means that we have factors of the form $(x + 2)^2$ and $(x - 2)^2$. Therefore, the equation takes on the form $y = a(x + 2)^2(x - 2)^2$, $a \in R$ Next, when x = 0, y is positive. This means that a is also positive. We can then assume that $y = (x + 2)^2(x - 2)^2$

$$y = [(x+2)(x-2)]^{2}$$
$$y = (x^{2}-4)^{2}$$

Answer E

Question 3

Using Pascal's triangle, we have $\left(2x - \frac{3}{x}\right)^4 = (2x)^4 - 4(2x)^3\left(\frac{3}{x}\right) + 6(2x)^2\left(\frac{3}{x}\right)^2 - 4(2x)\left(\frac{3}{x}\right)^3 - \left(\frac{3}{x}\right)^4$ By observation, the term independent of x is the 3rd term.

i.e.
$$6(2x)^2 \left(\frac{3}{x}\right)^2 = 6 \times 4 \times 9 = 216$$

Answer A

Question 4

First: $(0, 0) \rightarrow (1, 0)$ therefore translation of 1 unit to the right, i.e. $f(x) \rightarrow f(x-1)$, so that the point (1, 1) would now be (2, 1).

However we have the point (2, 8), indicating a dilation parallel to y-axis.

Therefore $f(x-1) \rightarrow 8f(x-1)$, i.e. $f(x) \rightarrow f(x-1) \rightarrow 8f(x-1)$

Answer A

Question 5

Reflect the graph about the line y = x. One quick check is to select a few coordinates, interchange the x and y values and plot them. The graph of the inverse should pass through these new points.

Answer E

2

From graph, the only solution is in [0, 1]. Answer B

Question 7

$$\log_{10} x = \log_{10}(by - a) - \log_{10} a$$

$$\Leftrightarrow \log_{10} x = \log_{10}\left(\frac{by - a}{a}\right)$$

$$\Leftrightarrow x = \frac{by - a}{a}$$

$$\Leftrightarrow ax = by - a$$

$$\Leftrightarrow by = a(x + 1)$$

$$\Leftrightarrow y = \frac{a}{b}(x + 1)$$

Answer B

Question 8

First we investigate the dilation factor (parallel to y-axis): $\frac{a}{b} \rightarrow \frac{1}{2}ab$, i.e. we need to multiply $\frac{a}{b}$ by $\frac{1}{2}b^2$ to get $\frac{1}{2}ab$ Therefore, $f(x) \rightarrow \frac{1}{2}b^2f(x)$ Next, dilation parallel to x-axis: $2\pi \rightarrow \pi$

Therefore, $f(x) \rightarrow f(2x)$

$$\therefore f(x) \to \frac{1}{2}b^2f(2x)$$

Answer E

Question 9

 $f(x) = -a + 5a\sin(c\pi x)$ Min is -5a - a = -6aMax is 5a - a = 4aPeriod is $\frac{2\pi}{c\pi} = \frac{2}{c}$

Answer B

. 1

Question 10

Slope of
$$PQ = \frac{\frac{1}{x+h} - \frac{1}{x}}{h}$$
$$= \frac{x-x-h}{h(x)(x+h)}$$
$$= -\frac{1}{x(x+h)}$$

Answer C

Question 11

By the chain rule, the derivative is $-2\sin 2x \times e^{\cos 2x}$ Answer C

Question 12

Using the quotient rule, $\frac{dy}{dx} = \frac{e^{2x}\frac{1}{2}(2x-1)^{-1/2} \times 2 - \sqrt{2x-1} \times 2e^{2x}}{(e^{2x})^2}$ $= \frac{1}{e^{2x}\sqrt{2x-1}} - \frac{2\sqrt{2x-1}}{e^{2x}}$ $= \frac{1-2(2x-1)}{e^{2x}\sqrt{2x-1}}$ $= \frac{3-4x}{e^{2x}\sqrt{2x-1}}$

Answer A

Question 13

$$V'(t) = \frac{3}{20} \cos \frac{t}{10}$$

At $t = 5$, $V'(5) = \frac{3}{20} \cos \frac{1}{2} = 0.13$

Answer A

Question 14

,

The approximate change in y, δy , is given by $\delta y = \frac{dy}{dx} \delta x$.

$$\frac{dy}{dx} = 3x^2 + 1$$
At $x = 2$, $\frac{dy}{dx} = 13$
So $\delta y = 13 \times 0.01$
 $= 0.13$
Answer D

We can set up a table of values:

Answer A

Question 16

Remember the areas below the x axis are negative integrals so we must subtract this area.

Answer C

Question 17

$$A = 4 \int_0^{\frac{\pi}{2}} 3\sin 2x \, dx$$

Answer D

Question 18

Four or more customers were served on 16 days. Therefore, proportion is $\frac{16}{25} = 0.64$.

Answer A

Question 19

We can generate the probability distribution function (table) for X:

ſ	x	0	1	2	3	4	5	6
	$\Pr(X = x)$	$\frac{2}{25}$	0	$\frac{4}{25}$	$\frac{3}{25}$	$\frac{2}{25}$	$\frac{6}{25}$	$\frac{8}{25}$

$$E(X) = \frac{1}{25}(2 \times 4 + 3 \times 3 + 4 \times 2 + 5 \times 6 + 6 \times 8)$$
$$= \frac{1}{25}(8 + 9 + 8 + 30 + 48)$$
$$= 4.12$$

Answer C

$$n = 12, E(x) = np = 7.2$$
, therefore
 $p = \frac{7.2}{12} = 0.6$
 $Var(x) = npq$
 $= 12 \times 0.6 \times 0.4$
 $= 2.88$

Answer A

Question 21

The fact that the guessing process is repeated 27 times implies a binomial process.

Here
$$n = 27$$
, $p = \frac{1}{5}$, $q = \frac{4}{5}$, $x = 20$.

So if x = number of correct guesses,

$$\Pr(x=20) = {}^{27}C_{20}\left(\frac{1}{5}\right)^{20}\left(\frac{4}{5}\right)^7$$

Answer E

Question 22

$$\frac{{}^{8}C_{1}{}^{12}C_{3}}{{}^{20}C_{4}} + \frac{{}^{8}C_{0}{}^{12}C_{4}}{{}^{20}C_{4}} = 0.3633 + 0.1022$$
$$= 0.4655$$

= 0.47 correct to 2 decimal places

Answer B

Question 23

$$Var(X) = n \frac{D}{N} \left(1 - \frac{D}{N}\right) \left(\frac{N - n}{N - 1}\right)$$
$$= 4 \times \frac{12}{20} \times \frac{8}{20} \times \frac{16}{19}$$
$$= \frac{384}{475}$$
$$\sigma(X) = \sqrt{\frac{384}{475}}$$
$$\approx 0.90$$
Answer C

With Y = 2Z + 1, E(Y) = E(2Z + 1) = 2E(Z) + 1 = 1 (since E(Z) = 0). Therefore the graph is translated 1 unit to the right. Next, Var(Y) = Var(2Z + 1)= Var(2Z)= 4Var(Z)

Therefore distribution of Y has a much larger spread.

Answer C

Question 25

The 95% confidence interval is given by $(\mu - 2\sigma, \mu + 2\sigma)$,

i.e. $(132 - 2\sqrt{9}, 132 + 2\sqrt{9})$ or (126, 138).

Answer B

Question 26

Let X =time taken to answer.

$$\Pr(X < 50) = \Pr\left(Z < \frac{50 - 60}{10}\right)$$

= $\Pr(Z < -1)$

Answer A

Question 27

Using X =time taken to answer,

$$Pr(X < 50 | X < 60) = \frac{Pr(X < 50 \cap X < 60)}{Pr(X < 60)}$$
$$= \frac{Pr(X < 50)}{Pr(X < 60)}$$
$$= \frac{0.1587}{0.5}$$
$$= 0.3174$$

Answer D

PART II

Question 1

b. Original function:
$$y = x^2 - 2x$$

$$= (x - 1)^2 - 1$$
Inverse function: $x = (y - 1)^2 - 1$
 $x + 1 = (y - 1)^2$
 $\sqrt{x + 1} = y - 1$
(only the positive square root is needed due to restricted domain of f)

$$f^{-1}(x) = \sqrt{x+1} + 1$$
 [A]

Question 2

a.
$$\frac{d(\sin 2x^2)}{dx} = 4x\cos(2x^2)$$
Use the chain rule: Let $u = 2x^2$, so that $\frac{du}{dx} = 4x$.
Then $y = \sin u$, $\frac{dy}{du} = \cos u$. [M]
 $\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$
 $= \cos u \times 4x$
 $= 4x\cos(2x^2)$ [A]
b. As $\frac{d(\sin(2x^2))}{dx} = 4x\cos(2x^2)$,
 $\int 4x\cos(2x^2) dx = \sin(2x^2) + c$ [M]
 $\therefore \int x\cos(2x^2) dx = \frac{1}{4}\sin(2x^2) + c$ [A]

8

.

[A] [A]

a. When
$$x = e$$
, $y = \log_e e^2$
= $2\log_e e$
= 2 [A]

b. Gradient of tangent
$$= \frac{dy}{dx}$$

 $= \frac{2x}{x^2}$

$$=\frac{2}{x}$$
When $x = e$, gradient $=\frac{2}{e}$
[A]

c. Gradient of normal =
$$-\frac{e}{2}$$
 [A]

Equation of normal is
$$y = \frac{-e^2}{2}x + c$$

Substitute $(e, 2)$: $2 = \frac{-e^2}{2} + c$ [M]

$$\therefore c = 2 + \frac{e^2}{2}$$

Hence equation required is $y = \frac{-e^2}{2}x + \frac{e^2}{2} + 2$ [A]

Question 4

Area =
$$\int_{1}^{a} x^{2} + a \, dx$$

 $\therefore 1 = \left[\frac{x^{3}}{3} + ax\right]_{1}^{a}$
[M]
 $1 = \left(\frac{a^{3}}{3} + a^{2}\right) - \left(\frac{1}{3} + a\right)$
[A]
 $\therefore 3 = a^{3} + 3a^{2} - 1 - 3a$
or $a^{3} + 3a^{2} - 3a - 4 = 0$
[A]
Using a graphic calculator, $a = 1.361$
[A]

9

.

,

t

[M]

Question 5

a. Let X = the number of black balls.

$$Pr(X = 3) = \frac{\binom{{}^{3}C_{3}}{{}^{10}C_{2}}}{{}^{10}C_{5}}$$

= 0.083 [A]

b. The first three balls drawn are white. This leaves 3 black and 4 white balls, from which 2 are to be drawn. If X = the number of black balls selected, we require

$$Pr(X \ge 1) = 1 - Pr(X = 0)$$

$$= 1 - \frac{\binom{3}{C_{0}}\binom{4}{C_{2}}}{\binom{7}{C_{2}}}$$

$$= 1 - \frac{6}{21}$$

$$= \frac{15}{21}$$
[A]

Or alternatively, $Pr(X \ge 1) = Pr(X = 1) + Pr(X = 2)$

$$= \frac{\binom{{}^{3}C_{1}\binom{{}^{4}C_{1}}{{}^{7}C_{2}}}{\binom{{}^{7}C_{2}}{{}^{7}C_{2}}} + \frac{\binom{{}^{3}C_{2}\binom{{}^{4}C_{0}}{{}^{7}C_{2}}}{\binom{{}^{7}C_{2}}{{}^{7}C_{2}}}$$
$$= \frac{12}{21} + \frac{3}{21}$$
$$= \frac{15}{21} \text{ (or 0.714)}$$