Mathematical Methods (CAS) pilot study: supplementary questions – multiple choice solutions and comments

Question	Answer	Comments
1	А	Solve $t + 6 > 6$ and $t + 6 < -6$ to give $t > 0$ or $t < -12$ respectively.
2	D	$f(3x+2) = ((3x+2)+2)^4 = (3x+4)^4$
3	В	(-1,0), $(0,1)$ and $(1,0)$ are transformed to $(-1,0)$, $(0,3)$ and $(1,0)$ respectively by the dilation of a factor 3 from the <i>x</i> -axis, then to $(-1,-2)$, $(0,1)$ and $(1,-2)$ respectively by a vertical translation of two units down, and finally to $(-4,-2)$, $(-3,1)$ and $(-2,-2)$ respectively by a horizontal translation of 3 units to the left.
4	D	The gradient of the graph of y will be positive when $y'(x) = \frac{d}{dx} \left(\frac{f(x)}{e^x} \right) > 0.$ $\frac{d}{dx} \left(\frac{f(x)}{e^x} \right) = \frac{e^x f'(x) - e^x f(x)}{e^{2x}}$ $= \frac{f'(x) - f(x)}{e^x}$ Since $e^x > 0$ for all x, so $\frac{d}{dx} \left(\frac{f(x)}{e^x} \right) > 0$ whenever f'(x) > f(x).
5	Α	$\frac{dy}{dx} = \frac{2x}{x^2} = \frac{2}{x}, x \neq 0. \text{ At } x = -1, \frac{dy}{dx} = -2.$
6	A	Product rule for differentiation, followed by some re-expression.
7	D	The price of the shares was increasing most quickly at the point where the gradient has its largest positive value. This is at <i>D</i> .

Mathematical Methods (CAS) pilot study: supplementary questions – multiple choice solutions and comments

8	С	As the plant is growing at a variable rate of growth, the height
		will be increasing most quickly when the gradient $\frac{dH}{dt}$ is a
		maximum.
9	Α	Since $f'(-1) = 0$ and $f'(x) < 0$ when $x > -1$ or when
		Since $f(1)$ is and $f(n)$ is when $n = 1$ of when
		x = -1, so the graph has a stationary point of inflection at $x = -1$.
		Since $f'(-3) = 0$ and $f'(x) > 0$ when $x < -3$ and $f'(x) < 0$
		when $-3 < x < -1$, so the graph has a local maximum at
		x = -3.
		Since f is a polynomial function of degree 4, this local maximum must also be a maximum.
10	E	$x'(t) = 5e^{\frac{-t}{10}}(\frac{-t}{10}\sin(2\pi t) + 2\pi\cos(2\pi t))$
		$x'(0) = 10\pi$, so the pendulum initially moves in the positive
		direction at 10π centimetres per second. Hence E is correct.
11	E	If $f'(x) = xe^x$ then $f'(x) = xe^x + e^x = e^x(x+1)$
		so $\frac{f'(x)}{f(x)} = \frac{xe^x + e^x}{xe^x} = \frac{x+1}{x}$.
12	В	$D(p) = \sqrt{200 - p}$, so $D'(p) = \frac{-1}{2\sqrt{200 - p}}$
		so $E(p) = \frac{-pD'(p)}{D(p)} = \frac{p}{2(200-p)}$
13	Α	Distance = $\int_{0}^{2} \sin^{2}(\frac{\pi t}{2})dt = 1$

Mathematical Methods (CAS) pilot study: supplementary questions – multiple choice solutions and comments

14	С	Since the sum of probabilities must equal 1, $k^3 - 3k^2 - \frac{k}{4} + \frac{7}{4} = 1$. Solutions are $k = -\frac{1}{2}$, $\frac{1}{2}$, 3. If $k = 3$, P(X=0) >1, an impossibility. If $k = -\frac{1}{2}$, then P(X=0) <0, also an impossibility. If $k = \frac{1}{2}$, then all probabilities in the table will lie between 0 and 1, as required for a probability distribution.
15	В	For this to be a probability density function, we must have $\int_{0}^{m} e^{-\frac{x}{m}} dx = 1. \text{ As } \int_{0}^{m} e^{-\frac{x}{m}} dx = m(1 - e^{-1}) \text{ which requires that}$ $m = (1 - e^{-1})^{-1}$
16	E	If <i>M</i> is the median of <i>X</i> , then $\int_{0}^{M} 2(1-x)dx = 0.5$, and hence <i>M</i> could be $\frac{2\pm\sqrt{2}}{2}$. But $0 \le x \le 1$ and $\frac{2+\sqrt{2}}{2} > 1$, so $M = \frac{2-\sqrt{2}}{2}$.
17	D	This is a Markov chain application, since what happens on a day depends only on what happened the previous day(alternatively a tree diagram could be used). Transition matrix $T = \begin{bmatrix} .90 & .60 \\ .10 & .40 \end{bmatrix}$ and initial state matrix $S_0 = \begin{bmatrix} 500 \\ 500 \end{bmatrix}$ On Wednesday the state matrix is $\begin{bmatrix} .90 & .60 \\ .10 & .40 \end{bmatrix}^2 \begin{bmatrix} 500 \\ 500 \end{bmatrix} = \begin{bmatrix} 825 \\ .175 \end{bmatrix}$

٦

Mathematical Methods (CAS) pilot study: supplementary questions – multiple choice solutions and comments

18	Α	As <i>f</i> is a probability density function, $\int_{0}^{k} x e^{-\frac{k}{m}} dx = 1$. Since
		$\int_{0}^{k} x e^{-\frac{k}{m}} dx = k^{2} \left(1 - \frac{2}{e}\right), \text{ and } k > 0, \ k = \sqrt{\frac{e}{e - 2}}$
19	С	$\Pr(0.25 < X < 0.5) = \int_{0.25}^{0.5} \frac{2(x+2)}{5} dx = 0.2375.$
20	Е	$\mu = E(X) = \int_{0}^{1} \frac{2x(x+2)}{5} dx = 0.5333$
21	В	$X =$ the number of goals in 10 throws, $X \sim$ Bi (10, 0.85). Pr(X > 8) = Pr(X = 9) + Pr(X = 10)
22	D	Pr(First three throws miss, fourth throw is a goal) = $0.15 \times 0.15 \times 0.15 \times 0.85$
23	С	If she has scored her first goal before her fourth attempt, then she must have scored on either her first, second or third attempt.
24	В	$np = 15$, $\sqrt{np(1-p)} = 3$, where <i>n</i> is the number of components in a batch and <i>p</i> is the probability of a component surviving the shock test. Hence, $15(1-p) = 9$, so $(1-p) = \frac{3}{5}$, and $p = \frac{2}{5}$.
25	D	$np = 15$, $\sqrt{np(1-p)} = 3$, where <i>n</i> is the number of components in a batch and <i>p</i> is the probability of a component surviving the shock test. From question 26, $p = \frac{2}{5}$. If the sixth component
		tested is the first to survive the shock test, then the first five components tested must have failed the shock test, hence required probability is $\left(\frac{3}{5}\right)^5 \times \frac{2}{5}$.